CHAPTER 1

A CRITIQUE OF ABSOLUTISM IN THE
PHILOSOPHY OF M ATHEMATICS

Historically, mathematics has long been viewed as the paradigm of infal-
libly secure knowledge. Euclid and his colleagues first constructed a magnifi-
cent logical structure around 2,300 years ago in the Elements, which at least
until the end of the nineteenth century was taken as the paradigm for estab-
lishing incorrigible truth. Descartes ([1637] 1955) modeled his epistemology
directly on the method and style of geometry. Hobbes claimed that “geome-
try . . . is the only science . . . bestow[ed] on [hu]mankind” (Hobbes [1651]
1962, 77). Newton in his Principia and Spinoza in his Ethics used the form of
the Elements to strengthen their claims of systematically expounding the truth.'
This logical form reached its ultimate expression in Principia Mathematica, in
which Whitehead and Russell (1910-13) reapplied it to mathematics, while
paying homage to Newton with their title. As part of the logicist program,
Principia Mathematica was intended to provide a rigorous and certain founda-
tion for all of mathematical knowledge. Thus mathematics has long been taken
as the source of the most infallible knowledge known to humankind, and much
of this is due to the logical structure of its presentation and justification.

With this background, a philosophical inquiry into mathematics raises
questions including: What is the basis for mathematical knowledge? What is
the nature of mathematical truth? What characterizes the truths of mathemat-
ics? What is the justification for their assertion? Why are the truths of mathe-
matics necessary truths? How absolute is this necessity?

THE NATURE OF KNOWLEDGE

The question, What is knowledge? lies at the heart of philosophy, and
mathematical knowledge plays a special part. The standard philosophical
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2 SociAL CONSTRUCTIVISM AS A PHILOSOPHY OF MATHEMATICS

answer, which goes back to Plato, is that knowledge is justified true belief. To
put it differently, propositional knowledge consists of propositions which are
accepted (i.e., believed), provided there are adequate grounds fully available
to the believer for asserting them (Sheffler 1965; Chisholm 1966; Woozley
1949). This way of putting it avoids presupposing the truth of what is known,
although traditional accounts require it, by referring instead to adequate
grounds, which also include the justificatory element. The phrase “fully avail-
able” circumvents the difficulty caused when the adequate grounds exist but
are not in the cognizance of the believer.’

Knowledge is classified on the basis of the grounds for its assertion. A
priori knowledge consists of propositions which are asserted on the basis of
reason alone, without recourse to observations of the world. Here reason con-
sists of the use of deductive logic and the meanings of terms, typically to be
found in definitions. In contrast, empirical or a posteriori knowledge consists
of propositions asserted on the basis of experience, that is, based on observa-
tions of the world (Woozley 1949). This basis refers strictly to the empirical
Jjustificatory basis of a posteriori knowledge, not its genesis. Indeed, such
knowledge may be initially generated by pure thought, whilst a priori knowl-
edge, such as that of mathematics, may be first generated by induction from
empirical observation. Such origins are immaterial; only the grounds for
asserting the knowledge matter. This distinction is first to be found in Kant
([1781] 1961), but also occurs implicitly in earlier work, such as in Leibniz
(*“truths of reason” versus “truths of fact”) and Hume (“matters of fact” ver-
sus “matters of reason”), Vico (“verum” or a priori truth versus “certum” or
the empirical), as well as being anticipated by Plato.

Kant not only distinguishes a priori and a posteriori knowledge, on the
basis of the means of verification used to justify them, but also distinguishes
between analytic and synthetic propositions, A proposition is analytic if it fol-
lows from the law of contradiction, that is, if its denial is logically inconsis-
tent.’ Kant argued that mathematical knowledge is synthetic a priori, since it
is based on reason, not empirical facts, but does not follow from the law of
contradiction alone. The standard view in epistemology (see Feigl and Sellars
1949, for example) is that Kant was wrong and mathematics is analytic, and
that the analytic can be identified with the a priori and the synthetic with the
a posteriori. According to this view, mathematical theorems add nothing to
knowledge which is not implicitly contained in the premises logically,
although psychologically the theorems may be novel.

The debate is not straightforward, for a number of reasons. First of all,
Kant believed in a universal logic, whereas now we recognize alternative sys-
tems in logic (Haack 1974, 1978). He also believed that mathematical theo-
ries such as Euclidean geometry and arithmetic are the necessary logical out-
comes of reason. (Non-Euclidean geometry and nonstandard arithmetics were
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CRITIQUE OF ABSOLUTISM 3

simply not possible in his system.) He concluded that although the truths of
mathematics are necessary, they do not follow from the law of contradiction,
but from the forms that human understanding takes, by its very nature.

A number of modern philosophers have agreed with Kant, at least so far
as to dissent from the received view that identifies the analytic with the a pri-
ori and the synthetic with the a posteriori. Hintikka (1973) argues that some
mathematical proofs require the addition of auxiliary elements or concepts,
and hence add something unforeseen and logically novel to the mathematical
knowledge. Since such proofs do not rest on the law of contradiction alone,
he argues that they are synthetic, in both senses, as well as a priori. Brouwer
and Wittgenstein (as I shall show below and in chap. 3, respectively) similarly
accept that some mathematical knowledge is both synthetic and a priori.
Finally, some others, such as Quine (1953b, 1970) and White argue that “the
analytic and the synthetic [is] an untenable dualism” (White 1950). Their
view is that the boundary between the two classes cannot be fixed determi-
nately. Quine (1960) goes on to elaborate his view that mathematical and
empirical scientific knowledge cannot be neatly partitioned into the analytic
and synthetic. He argues that the whole of language is a *“vast verbal struc-
ture,” and it is not possible to separate out those parts which have empirical
import from those that do not; “this structure of interconnected sentences is a
single connected fabric including all sciences, and . . . logical truths” (Quine
1960, 12).

These subtleties and dissenting views notwithstanding, according to the
received view mathematical knowledge is classified as a priori knowledge,
since it consists of propositions asserted on the basis of reason alone. Reason
includes deductive logic and definitions which are used, in conjunction with
an assumed set of mathematical axioms or postulates, as a basis from which
to infer mathematical knowledge. Thus the foundation of mathematical
knowledge, that is, the grounds for asserting the truth of mathematical propo-
sitions, consists of deductive proof, together with the assumed truth of any
premises employed. Apart from the assumed truth of the premises, there is
another fundamental way in which mathematical proof depends on truth. The
essential underpinning feature of a correct or valid deductive proof is the
transmission of truth, that is, truth value is preserved.

Truth in Mathematics

It is often the case in mathematics that the definition of truth is assumed
to be clear-cut, unambiguous, and unproblematic. While this is often justifiable
as a simplifying assumption, the fact is that it is incorrect and that the meaning
of the concept of truth in mathematics has changed significantly over time. I
wish to distinguish among three truth-related concepts used in mathematics.
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4 SociaL CONSTRUCTIVISM AS A PHILOSOPHY OF MATHEMATICS

The traditional view of mathematical truth. First of all, there is the tra-
ditional view that a mathematical truth is a general statement which not only
correctly describes all its instances in the world (as would a true empirical
generalization) but is necessarily true of its instances. Implicitly underpinning
this view is the assumption that mathematical theories have an intended inter-
pretation, often an idealization of some aspect of the world. The key feature
of this view is the association of an intended interpretation with a theory. Thus
number theory refers to the domain of natural numbers, geometry refers to
ideal objects in space, calculus largely refers to functions of the real line, and
so on. To be true in this first sense (I will denote it by “truth,”) is to be true in
the intended interpretation. The mode of expression I have used depends of
course upon a modern way of thinking, for it requires prizing open mathe-
matical signs to separate the signifiers (formal mathematical symbols) from
the signified (the intended meanings). Truth, treats mathematical signs as inte-
gral; only one interpretation is built in.

Truth, is analogous to naive realism, a view of truths as statements
which accurately describe a state of affairs in some fixed realm of discourse.
According to this view, the terms involved in expressing the truth name
objects in the intended universe of discourse, and the true statement as a
whole describes the relationship that holds between these denotations. In
essence, this is the naive correspondence theory of truth.

Such a view of mathematical truth was widespread, dominant even,
until the middle and end of the nineteenth century. For example De Morgan
commenting on Peacock’s new generalized formal algebra described it as
made up of “symbols bewitched . . . running about the world in search of
meaning” (1835, 311). What he objected to was the severance of algebraic
symbols from their generalized arithmetical meanings (Richards 1987). With-
out such fixed and determinate meanings, mathematical propositions could
not express their intended meanings, let alone truths. Similarly, Frege had a
sophisticated and philosophically well elaborated view that the theorems of
arithmetic are true in its intended interpretation, the domain of natural num-
ber. Again, this is the notion of truth,.

Mathematical truth as satisfiability. Secondly, there is the modern view
of the truth of a mathematical statement relative to a background mathemati-
cal theory: the statement is satisfied by some interpretation or model of the
theory. I shall term this second conception “truth,.” According to this (and the
following) view, mathematical theories are open to multiple interpretations,
that is, possible worlds. Truth in this sense consists merely in being true (i.e.,
satisfied, following Tarski 1936) in one of these possible worlds; that is, in
having a model. Thus truth, is represented by Tarski’s explication of truth,
which forms the basis of model theory. A proposition is true, relative to a
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given mathematical theory if there is some interpretation of the theory which
satisfies the proposition, irrespective of the other properties of the interpreta-
tion, such as resemblance to some original intended interpretation. (This inter-
pretation must include an assignment of objects and relations of appropriate
type to the extralogical symbols, as well as an assignment of values from the
universe of discourse to the variable letters of the proposition.)

Truth, probably originates with Hilbert’s work on geometry. Hilbert
detached geometrical notions such as ‘point, line, and plane’ from their orig-
inal physical (or ideal) interpretations, and argued instead that they could be
interpreted as ‘table, chair, and beer-mug’, provided that what resulted was a
model of the axioms of geometry. It has been suggested that Tarski’s theory
of truth originates in algebra, by analogy with a set of roots satisfying an equa-
tion. Likewise, the assignment of values to the components of a proposition
satisfies it when it makes it true.

Truth, is anticipated by Leibniz’s notion of ‘true in a possible world’,
which he contrasted with ‘true in all possible worlds’ (Barcan Marcus 1967).

Logical truth or validity in mathematics. Thirdly, there is the modern
view of the logical truth or validity of a mathematical statement relative to a
background theory: the statement is satisfied by all interpretations or models
of the theory. Thus the statement is true in all of these representations of pos-
sible worlds. I shall denote this conception of truth by ‘truthy’. Evidently truth,
more or less corresponds to Leibniz’s notion of ‘true in all possible worlds’.
This is also one of the notions explicated by Tarski’s theory of mathematical
truth as ‘logical validity’.

Truth, can be established by logical deduction from the background the-
ory if the theory is represented by a first-order axiom set, as Godel’s (1930)
completeness theorem establishes. For a given theory, Truths, (the set of
propositions which are true in the sense of truth,) is a subset (usually a proper
subset) of Truths,. Incompleteness arises, as Godel ([1931] 1967) proved, in
most mathematical theories as there are true, sentences (i.e., satisfied in the
intended model) which are not true, (i.e., true in all models).

Thus not only does the concept of truth have multiple meanings, but
crucial mathematical issues hinge upon this ambiguity. The modern mathe-
matical views of truth (truth, and truth,) differ in meaning and properties from
the traditional mathematical view of truth, and the everyday naive notion
which resembles it. Historically, the transition from truth, to the modern
notions was highly problematic, as Richards (1980, 1989) shows in her stud-
ies. Even the correspondence between such mathematically (and philosophi-
cally) great thinkers as Frege (1980) and Hilbert shows disagreements and
sometimes a lack of understanding that may be attributed to Frege’s use of
truth, and Hilbert’s use of truth,.
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A consequence of this is that the traditional problem of establishing the
indubitable foundations of mathematical truth has changed in meaning, as the
definition of truth employed has changed. The relationship between the three
notions explicated above is as follows (assuming a given background mathe-
matical theory). Given any proposition P, if P is true,, then P is also true,; and
if P is true,, it is also true,. Thus to claim that a statement is true, is much
weaker than truth, or truth,.

Although there are these complexities in the mathematical concept of
truth, one way to vouchsafe it has remained at the center of mathematics for
more than two millennia, that is, mathematical proof. This ties in with the dis-
cussion of truth, because as mentioned above provability (relative to a given
set of axioms) is equivalent to truth, (Gédel 1930). Similarly, it follows from
a contrapositive argument that consistency (relative to a given set of axioms)
is equivalent to truth,.

Proof in Mathematics

Since proof constitutes the means of justifying knowledge in mathe-
matics, it is important to analyze how it does this. The proof of a mathemati-
cal proposition is a finite sequence of statements ending in the given proposi-
tion, which sequence ideally satisfies the following property.* Each statement
is an axiom drawn from a previously stipulated set of axioms, or is derived by
a rule of inference from one or more statements occurring earlier in the
sequence. The term set of axioms should be understood broadly, to include
whatever statements are admitted into a proof without demonstration, includ-
ing axioms, postulates, and definitions.

This account describes a “primitive” and ideal proof, one in which all
of the assumptions are primitive, that is, basic assumptions, and all of the
inferences are justified by specified rules. In a “derived” proof some of these
assumptions are themselves the results of earlier proofs. A derived proof can,
in principle, be turned into a primitive proof simply by incorporating within it
the proofs of all nonprimitive assumptions, and iterating this procedure until
no nonprimitive assumptions remain. Thus there is no loss of generality in
considering only primitive proofs.® However the assumption that all proofs
can be rendered as ideal proofs, that is, as based on logical or mathematical
rules of inference, is not so easily discharged.®

The idea underpinning the notion of proof is that of truth transmission.
If the axioms adopted are taken to be true, and if the rules of inference infal-
libly transmit truth (i.e., true premises necessitate a true conclusion), then the
theorem proved must also be true. For there is an unbroken and undiminished
flow of truth from the axioms transmitted through the proof to the conclusion.
With this in mind, the modern definitions of the logical connectives are under-
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stood in terms of truth tables. Thus, an implication statement P—Q is true if,
and only if, it cannot be the case that P is true and Q is false. Thus to safe-
guard the transmission of truth in proof, the shared content or causal link
between antecedent and consequent sometimes found in the everyday lan-
guage usage of implication statements is sacrificed.

As a simple example of a mathematical proof I will analyze a proof of
the statement 1 + 1 = 2 in the axiomatic system of Peano arithmetic. This
proof requires as assumptions a number of definitions and axioms, as well as
logical rules of inference. These assumptions are the definitions of 1 and 2 as
successors of 0 and 1, respectively, axioms specifying the properties of addi-
tion recursively, and logical rules stating that (1) two equal terms have the
same properties and (2) a general property of numbers applies to any particu-
lar number. Based on these assumptions, 1 + 1 = 2 can be proved in ten steps.’
Each equation in the proof either is a specified assumption or is derived from
earlier parts of the proof by applying rules of inference. Since the assumptions
are assumed to be true, and the rules transmit truth, every equation in the
sequence is equally true, including 1 + 1 = 2. The proof establishes 1 + 1 =2
as an item of mathematical knowledge or truth, according to the previous
analysis, for the deductive proof provides a legitimate warrant for asserting
the statement.® Furthermore it is a priori knowledge, since it is asserted on the
basis of reason alone.

However, what has not yet been made clear are the grounds for the
assumptions made in the proof. These are of two types: mathematical and log-
ical assumptions. The mathematical assumptions used are the definitions and
the axioms. The logical assumptions are the rules of inference used, which are
part of the overall proof theory, as well as the underlying syntax of the formal
language. Although not specified here, this syntax is not negligible. It includes
the categories of symbols, and the inductively defined rules of combination
(e.g., for terms and sentences) and of transformation (e.g., substitution of indi-
vidual terms in formulas).

I consider first the mathematical assumptions. Explicit mathematical
definitions are unproblematic, since they are eliminable in principle. Thus
every occurrence of the defined terms 2 and 1 can be replaced by what is
abbreviated (the successors of 1 and 0, respectively), until these terms are
completely eliminated. The result is an abbreviated proof of “the successor of
zero plus the successor of zero = the successor of the successor of zero,”
which represents 1 + 1 = 2 in other words. Although explicit definitions are
eliminable in principle—that is, they do not entail any additional logical
assumptions—they play an important (probably essential) role in human
knowing. However, in the present context I am concerned to minimize
assumptions, to reveal the irreducible assumptions on which mathematical
knowledge and its justification rests.
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8 SociAL CONSTRUCTIVISM AS A PHILOSOPHY OF MATHEMATICS

If the definitions had not been explicit, such as in Peano’s original
inductive definition of addition (Heijenoort 1967), which are specified in the
example as basic axioms (Emest 1991, 5), then the definitions would not be
eliminable in principle. This case is analogous to that of an axiom. In other
words, a basic assumption would have been made and would have to be
acknowledged as such.

I have now disposed of all the categories of assumption that are elim-
inable. The axioms in the proof are not eliminable. They must either be
assumed as self-evident axiomatic (or otherwise warranted) truths or simply
retain the status of unjustified, tentative assumptions, adopted to permit the
development of the mathematical theory under consideration. The logical
assumptions, that is, the rules of inference (part of the overall proof theory)
and the logical syntax, are assumed as part of the underlying logic and are part
of the mechanism needed for the application of reason. Thus in proofs of
mathematical theorems, such as in the example under discussion, logic is
assumed as an unproblematic foundation for the justification of knowledge.

In summary, the elementary mathematical truth 1 + 1 = 2 depends for
its justification on a mathematical proof.’ This, in turn, depends on assuming
a number of basic mathematical statements (axioms), as well as on the under-
lying logic. In general, mathematical knowledge consists of statements justi-
fied by proofs, which depend on mathematical axioms (and an underlying
logic).

This account of mathematical knowledge is essentially that which has
been accepted for at least 2,300 years. Early presentations of mathematical
knowledge, such as Euclid’s Elements, are susceptible to the above descrip-
tion and differ from it only by degree. In Euclid, as above, mathematical
knowledge is established by the logical deduction of theorems from axioms
and postulates (which I include among the axioms). The underlying logic is
left unspecified (other than the statement of some axioms concerning the
equality relation). The axioms are not regarded as temporarily adopted
assumptions, held only for the construction of the theory under consideration.
The axioms are considered to be basic truths which need no justification,
beyond their own self evidence (Blanché 1966)."

Because of this, the account claims to provide absolute grounds for
mathematical knowledge. For if the axioms are truths and logical proof pre-
serves truth, then any theorems derived from them must also be truths. This
reasoning is implicit, not explicit, in Euclid. However, this claim is no longer
accepted because Euclid’s axioms and postulates are not considered basic
truths which cannot be denied without contradiction. As is well known, the
denial of some axioms, most notably the parallel postulate, merely leads to
other bodies of geometric knowledge, namely non-Euclidean geometry. As
well as the axioms, the proofs of Euclid’s Elements are now also regarded as
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flawed and falling short of modern standards of rigor. For they smuggle in
notions such as continuity, which is assumed for the accompanying diagrams,
even though these have no formal justificatory role in the proofs.

Beyond Euclid, modern mathematical knowledge includes many
branches which depend on the assumption of sets of axioms which cannot be
claimed to be basic universal truths, for example, the axioms of group theory
or of set theory. Maddy (1984) illustrates how modern set theorists add new
axioms to Zermelo-Fraenkel set theory and then explore their consequences
on a pragmatic basis, rather than regarding the additional axioms as intrinsi-
cally true. Henle (1991) also makes this point. However, my claim is that it is
not just recondite axioms such as those of set theory that have no claim to be
basic and unchallengeable universal truths, but that no such principles exist at
all. Even the law of the excluded middle, regarded by philosophers since the
time of Aristotle as one of the most basic of all logical principles (Kneale and
Kneale 1962), is challenged by a significant group of modern mathematicians
and philosophers (the intuitionists), indicating its dubitability and casting
doubt on its self-evidence and incontrovertibility.

In what follows I shall be casting further doubt on the infallibility of
mathematical knowledge and its foundation in mathematical proof.

THE PHILOSOPHY OF MATHEMATICS

According to Kitcher and Aspray (1988), Frege set the agenda and tone
for the modem (i.e., twentieth-century) philosophy of mathematics. Frege
([1884] 1968) adopted the view that the central problem for the philosophy of
mathematics is that of identifying the foundations of mathematical knowl-
edge. Basing his analysis on Kant’s distinction, Frege argued that mathemat-
ical knowledge consists of truths known a priori, and that reason alone, in the
form of logical proof, provides certain and absolute foundations for it.

Consequently, until recently, twentieth century philosophy of mathe-
matics has been dominated by the quest for absolute foundations for mathe-
matical truth. Of course this can also be viewed as merely the latest expres-
sion of an epistemological quest since Plato made an attempt, renewed by
Descartes, to find absolute foundations for knowledge in general and for its
central pillar, mathematical knowledge.

The aim of this chapter is to offer a critique of this conception and its
underlying assumptions. In particular, my main purpose is to expound and
criticize the dominant view, for which I shall adopt the term absolutist, that
mathematical truth is absolutely valid and thus infallible, and that mathemat-
ics (with logic) is the one and perhaps the only realm of incorrigible, indu-
bitable, and objective knowledge. I will contrast this with the opposing view,
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for which I shall adopt the term fallibilist, that mathematical truth is fallible
and corrigible and should never be regarded as being above revision and cor-
rection.

Fallibilism and Absolutism

The first philosopher of mathematics to explicitly state the importance
of the absolutist-fallibilist dichotomy is Imre Lakatos (1978b), who relates it
to the ancient controversy between dogmatists and skeptics. Lakatos intro-
duced the term fallibilism, adapted from Popper’s “critical fallibilism,” into
the philosophy of mathematics.

Lakatos is anticipated by C. S. Peirce’s “principle of fallibilism” to the
effect that we can know “only in an uncertain and inexact way” (Peirce
1931-58, 5:587) and “there are three things to which we can never hope to
attain by reasoning, namely, absolute certainty, absolute exactitude, absolute
universality” (1:141).

In philosophy there is some controversy as to what fallibilism means.
Haack claims that “fallibilism is a thesis about [1] our liability to error, and
not a thesis about [2] the modal status (possible falsity) of what we believe”
(1979-80, 309, original emphasis). In contrast O’Hear (1992) suggests that
fallibilism is the idea that any human opinions or judgements might turn out
false, that is, thesis 2. Following Lakatos I take the view that fallibilism
means—as the second of the two views expressed above—that it is theoreti-
cally possible that any accepted knowledge including mathematical knowl-
edge may lose its modal status as true or necessary. Such knowledge may have
its justificatory warrant rejected og withdrawn (losing its status as knowledge)
and be rejected as unwarranted, invalid, or even false."

Lakatos contrasts the term fallibilism both with its actual opposite of infal-
libilism (Lakatos 1961, 1976) and more often with an opposing set of perspec-
tives in the philosophy of mathematics that he terms “Euclidean” (Lakatos
1978b, 1976). Infallibilism is synonymous with absolutism, since both mean that
mathematical knowledge is indubitable, incorrigible, and infallible. There has
been much discussion of the Absolute in the history of philosophy. It occurs
metaphysically in the work of Hegel and the idealists Bosanquet, Bradley, and
Royce. William James (1912) explicitly uses the term epistemologically when he
contrasts absolutism with empiricism. Although the term has been in currency
for some time, to the best of my knowledge Confrey (1981) is the first to apply
the term in print to the philosophy of mathematics. Recently Harré and Krausz
(1996) contrasted absolutism with relativism. Indeed they offer an analysis of
different absolutisms and relativisms; this I discuss further in chapter 8.

The absolutist-fallibilist dichotomy distinguishes what in my view is the
most important epistemological difference between competing accounts of
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the nature of mathematics and mathematical knowledge. Indeed, this distinc-
tion has pervasive effects through much broader realms than those of philos-
ophy or mathematics alone (Ernest 1991). The distinction parallels that
between apriorism and naturalism in the philosophy of mathematics of
Kitcher (1984, 1988). Apriorism “is the doctrine that mathematical knowl-
edge is a priori,” and it “must be obtained from a source different from per-
ceptual experience” (Kitcher 1984, 3). Naturalism opposes this doctrine, and
it argues that there are empirical or quasi-empirical sources of justification of
mathematical knowledge and that the role of the philosophy of mathematics
is to accommodate this and offer a naturalistic account of mathematics. Evi-
dently there is a very close parallel in the two dichotomies; and although there
are definitional differences between them, they result in an identical parti-
tioning of schools in the philosophy of mathematics.

Foundationalism in the Philosophy of Mathematics

The target of my critique is any attempt to establish absolutism by
means of epistemological foundationalism. The term foundationalism is used
to describe a number of different perspectives in which belief or knowledge is
divided into two parts, foundation and superstructure, and in which the latter
depends on the former for its justification, and not vice versa (Alston 1992).
Alston points out that some of these senses concern the structure of an indi-
vidual knower’s system of beliefs. This accords with the fact that standard
accounts of epistemology often begin discussions of knowledge by referring
to individual acts of knowing (Chisholm 1966; Ryle 1949; Woozley 1949). In
those acts that conform to Ryle’s sense of “knowing that” what is known or
grasped is a proposition, the informational content expressed by a sentence.
Thus it is possible to consider the content of knowing in traditional epistemo-
logical accounts to be knowledge in the form of propositions or sentences. In
general this assumption is unwarranted. However, in the case of mathematics
(and science) epistemological discussions usually, but not always, refer to
knowledge not knowing, that is, to the subject known instead of the knowing
subject. Thus the form of knowledge may be taken as the sentence, or a logi-
cally organized structure of sentences, the theory. There is more to be said
about individual acts of knowing in mathematics, but I shall defer the discus-
sion to later.

Thus a widely adopted assumption in epistemology is that knowledge in
any field is represented by a set of propositions, supported with a set of pro-
cedures for verifying them or providing a warrant for their assertion. This
assumption is remarked upon by Harding ( 1986), among others, albeit criti-
cally. Viewed in this way, mathematical knowledge consists of a set of propo-
sitions warranted by proofs. Mathematical proofs are based on deductive rea-
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son, comprising chains of necessary inferences. Since it is warranted by rea-
son alone, without recourse to empirical data, mathematical knowledge is
understood to be the most infallible and certain of all knowledge, for it avoids
the possibilities of error introduced by perception and other empirical sources
of knowledge. Traditionally the philosophy of mathematics has seen its task
as providing a foundation for this infallibility; that is, providing a system into
which mathematical knowledge can be cast to systematically establish its
truth. This depends on an assumption, which is widely adopted, implicitly if
not explicitly.

The Foundationalist Assumption of the Philosophy of Mathematics: The pri-
mary concern of the philosophy of mathematics is establishing that there is,
or can be, a systematic and absolutely secure foundation for mathematical
knowledge and truth.

This assumption is the basis of foundationalism, the doctrine that the
function of the philosophy of mathematics is to provide ultimate and infalli-
ble foundations for mathematical knowledge. Foundationalism is bound up
with the absolutist view of mathematical knowledge, for it regards the justifi-
cation of absolutism to be the central problem of the philosophy of mathe-
matics.

Lakatos defines (and critiques) the position he terms “Euclideanism,”
which is a form of foundationalism modeled on the structure of Euclid’s Ele-
ments. In that system a set of axioms, postulates, definitions, and rules is used
to deduce a collection of theorems. Euclideanism similarly seeks to recast
mathematical knowledge into a deductive structure based on a finite number
of true axioms (or axiom schemes) analogous to Euclid’s theory of geometry.
This is very similar to, but less general than, the foundationalist assumption
or position that I critique. The interpretation of foundationalism adopted here
resembles that in Descartes’s method. It entails the reconstruction of mathe-
matical knowledge in terms of an absolute foundation and a superstructure
infallibly derived from it. The strategy of my critique in this chapter is
twofold, reflecting this structure. First, to attack the justificatory basis of the
foundation of mathematical knowledge: I shall argue that no absolute founda-
tion for mathematical knowledge can exist. Second, to attack the infallibility
of the derivation of the superstructure from it: I shall argue that any such
derivation is both fallible and incomplete. This second argument also
addresses the position obtained by withdrawing the epistemological assump-
tions concerning the truth of the foundation. This derived position is a form of
hypothetico-deductivism in which the axioms of mathematics are regarded as
tentative as opposed to true assumptions. However this position still claims
that the derivations of mathematical knowledge are infallible. As I shall show,
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this revised form remains a version of foundationalism, but one that is based
on a different conception of truth.

Kitcher and Aspray (1988) attribute the epistemological and founda-
tional tendency in the philosophy of mathematics to Frege, whom they regard
as the founding father and “onlie begetter” of the modern philosophy of math-
ematics. Frege ([1884] 1968) undertook a thorough critical review of the
range of philosophical positions possible, at least to his way of thinking, for
arithmetic. This is still regarded as a classic expression of analytic reasoning,
perhaps the first such application in the philosophy of mathematics. During
the last quarter of the nineteenth century Frege took his main task to be the
setting of arithmetic and arithmetical knowledge on a firm foundation. This,
as Kitcher and Aspray point out, was a natural extension of the earlier enter-
prise of constructing firm foundations for analysis pursued by Dedekind,
Weierstrass, Heine, and others."” Thus Frege installed the foundationalist pro-
gram, which is essentially epistemological, at the heart of the philosophy of
mathematics. He also severely weakened, at least temporarily, the claims of
any other programs or approaches to the philosophy of mathematics.

According to Kitcher (1979) and Kitcher and Aspray (1988), Frege
([1884] 1968) analyzed the possible sources of support for the foundations of
mathematics into three or four cases. He distinguished between justificatory
procedures for mathematics that were a priori and a posteriori. He criticized
and dismissed the possibility that the warrant for mathematical knowledge
could be empirical or a posteriori.

Given that only two alternatives were admissible to Frege, this meant
that the justificatory procedures for mathematics must be a priori. He rea-
soned that only two or three possibilities for justifying a priori knowledge are
possible. These are, focusing on arithmetic only, as follows. First, that arith-
metic is derivable from logic plus the definitions of a special arithmetical
vocabulary. Second, that arithmetic is founded on some special a priori intu-
ition. Third, a possibility he did not enumerate but treated incidentally, is that
arithmetic is not a science with some definite content, but can be represented
as a meaningless formal system. Thus, in the alternatives he considered, Frege
distinguishes the well springs of empiricism, logicism, intuitionism, and for-
malism. These possibilities have dominated thinking in the philosophy of
mathematics and continue to remain the main possibilities for justifying math-
ematical knowledge.

ABSOLUTIST VIEWS OF MATHEMATICAL KNOWLEDGE

The absolutist view of mathematical knowledge is that it consists of
infallible and absolute truths and represents the unique realm of infallible
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knowledge (in addition to logic and analytic statements true by virtue of the
meanings of terms, such as “All bachelors are unmarried”), which is neces-
sarily true in all possible circumstances and contexts.

Many philosophers, both modern and traditional, hold absolutist views
of mathematical knowledge. Thus according to Hempel, in his paper “on the
nature of mathematical truth™:

the validity of mathematics derives from the stipulations which deter-
mine the meaning of the mathematical concepts, and that the proposi-
tions of mathematics are therefore essentially “true by definition.”
(Feigl and Sellars 1949, 225)

Another proponent of the infallibility of mathematical knowledge is
Ayer, who is representative of logical positivism and logical empiricism when
he claims that

truths of mathematics and logic appear to everyone to be necessary and
certain. (Ayer 1946, 72)

The certainty of a priort propositions depends on the fact that they are
tautologies. (Ayer 1946, 16)

The claim that mathematics (and logic) provide necessary knowl-
edge—that is, truth—is based on the deductive method. Logical proof pro-
vides the warrant for the assertion of mathematical knowledge, as follows.
First of all, the basic statements used in proofs are taken to be true. Mathe-
matical axioms are assumed to be true, for the purposes of developing the
system under consideration; mathematical definitions are true by fiat; and
logical axioms are accepted as true. Second, the logical rules of inference
preserve truth; that is, they allow nothing but truths to be deduced from
truths. On the basis of these two facts, every statement in a deductive proof,
including its conclusion, is true. Thus, since mathematical theorems are all
established by means of deductive proofs, they are all necessary truths. This
constitutes the basis of the claim of many philosophers that mathematical
truths are infallible truths.

This absolutist view of mathematical knowledge is based on two types
of assumptions: those of mathematics, concerning the assumption of axioms
and definitions, and those of logic concerning the assumption of axioms, rules
of inference, and the formal language and its syntax. These are local or micro-
level assumptions. There is also the possibility of global or macro-level
assumptions, such as whether logical deduction suffices to establish all math-
ematical truths, or whether it is always a safe method. I shall subsequently
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argue that each of these assumptions weakens the claim of infallibility for
mathematical knowledge.

The absolutist view of mathematical knowledge encountered problems
at the beginning of the twentieth century when a number of antinomies and
contradictions were derived in mathematics (Kline 1980; Kneebone 1963:
Wilder 1965)." In a series of publications Gottlob Frege ([1879] 1967, [1893]
1964) established by far the most rigorous formulation of mathematical logic
known to that time, intended as a foundation for mathematical knowledge.
Russell ([1902] 1967), however, was able to show that Frege's system was
inconsistent. The problem lay in Frege’s fifth basic law, which allows a set to
be created from the extension of any concept, and for concepts or properties
to be applied to this set (Furth 1964). Russell produced his well-known para-
dox by defining the property of “not being an element of itself.” Frege’s law
allows the extension of this property to be regarded as a set. But then this set
is an element of itself if, and only if, it is not; a contradiction. Frege’s law
could not be dropped without seriously weakening his system, and yet it could
not be retained, on pain of contradiction.

Other paradoxes, antinomies, and contradictions emerged in the theo-
ries of sets and functions. Such findings have grave implications for the abso-
lutist view of mathematical knowledge. For if mathematics is certain, and all
its theorems are certain, how can contradictions (i.e., logical falschoods) be
among its theorems? Since there was no mistake about the appearance of
these contradictions, something must be wrong in the foundations of mathe-
matics. The outcome of this crisis was the development of a number of
schools in the philosophy of mathematics whose aims were to account for the
nature of mathematical knowledge and to reestablish its certainty. The three
major schools are known as logicism, formalism, and constructivism (incor-
porating intuitionism). The tenets of these schools of thought were not fully
developed until the twentieth century, but Kérner (1960) shows that their
philosophical roots can be traced back at least as far as Leibniz and Kant."

Logicism

Logicism is the school of thought that regards pure mathematics as a
part of logic. The major proponents of this view, following G. Leibniz’s antic-
ipation of it, are G. Frege ([1893] 1964), B. Russell (1919), A. N. Whitehead,
and R. Carnap ([1931] 1964). The claims of logicism were most clearly and
explicitly formulated by Russell. There are two claims.

1. All the concepts of mathematics can ultimately be reduced to logical con-

cepts, provided that these are taken to include the concepts of set theory or
some system of similar power, such as Russell’s theory of types.
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2. All mathematical truths can be proved from the axioms and rules of infer-
ence of logic alone,

The purpose of these claims is clear. If all of mathematics can be
expressed in purely logical terms and proved from logical principles alone, then
the necessity of mathematical knowledge can be reduced to that of logic. Logic
was considered to provide a sure foundation for truth, apart from mistaken
attempts, such as Frege’s fifth law, that overextended logic. Thus if carried
through, the logicist program would provide infallible logical foundations for
mathematical knowledge, establishing the absolute validity of mathematics. As
a youthful Russell expressed it, “I hoped sooner or later to arrive at a perfected
mathematics which should leave no room for doubts™ (Russell 1959, 28).

Extending the earlier work of Frege, Peano, and others, Whitehead and
Russell (1910-13) were able to establish the first of the two claims by means
of elaborate chains of definitions." However logicism foundered on the sec-
ond claim. Mathematics requires nonlogical rules of inference and axioms
such as the principle of mathematical induction (Steiner 1975) and the axioms
of infinity and choice.

But although all logical (or mathematical) propositions can be
expressed wholly in terms of logical constants together with variables,
it is not the case that, conversely, all propositions that can be expressed
in this way are logical. We have found so far a necessary but not a suf-
ficient criterion of mathematical propositions. We have sufficiently
defined the character of the primitive ideas in terms of which all the
ideas of mathematics can be defined, but not of the primitive proposi-
tions from which all the propositions of mathematics can be deduced.
This is a more difficult matter, as to which it is not yet known what the
full answer is.

We may take the axiom of infinity as an example of a proposition
which, though it can be enunciated in logical terms, cannot be asserted
by logic to be true. (Russell 1919, 202-3)

Russell’s claim has been confirmed by subsequent developments. A
number of important mathematical axioms are independent, and either the
axiom or its negation can be adopted without inconsistency (Cohen 1966).
This means that the axioms of mathematics are not eliminable in favor of
those of logic. Mathematics is a science with a definite content, and mathe-
matical theorems depend on an irreducible set of mathematical assumptions.
Thus the second claim of logicism is refuted.

To overcome this problem Russell retreated to a weaker version of logi-
cism, which has been called “if-thenism.” This version obviates the need for
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mathematical axioms or assumptions by proving a mathematical theorem (T)
as before, and then incorporating the conjunction of assumptions used in the
proof (A) into an implication statement A—T as its antecedent (Carnap [1931]
1964). This artifice represents the view that mathematics is a hypothetico-
deductive system, in which the consequences of assumed axiom sets are
explored, without asserting their necessary truth.” So if-thenism represents a
retreat from the absolutist position of logicism on mathematical knowledge. It
is closer to conventionalism, which allows the assumptions of mathematics to
be admitted as conventions, truths solely by fiat.

A problem with if-thenism is that many of the axiom sets used as the
basis for modern mathematical theories are infinite, due to the use of axiom
schemes and first-order logic. Thus both the induction axiom of Peano arith-
metic and the axiom of separation of Zermelo-Fraenkel (ZF) set theory, for
example, are such schemes (Bell and Machover 1977). Thus mathematical
theorems in if-thenism are represented as logically proven implication state-
ments with different finite subsets of axioms conjoined in their antecedents.
This leads to misrepresentations such as equivalent results within an
axiomatic theory no longer being equivalent, when their antecedents are of
different logical power. This is not a refutation of if-thenism. It could be
argued that the device is only for use in principle, not in practice, and so such
difficulties are irrelevant.

However, the device employed still leads to failure on other grounds.
For not all mathematical truths can be expressed in the above way as impli-
cation statements. Machover (1983) gives as an example the mathematical
truth proved by Gentzen (1936), namely, “Peano Arithmetic is consistent,”
which is a proposition that cannot be expressed as an implication statement.
Another counterexample is the Paris-Harrington proof of a version of Ram-
sey’s theorem (Barwise 1977). This is true in the intended model of Peano
arithmetic but not deducible from the axioms (see below). Hence it cannot be
represented in the required if-then form. Thus the claim of if-thenism that it
provides purely logical foundations for mathematical knowledge is refuted,
just as it is with logicism.

A more general objection that holds irrespective of the validity of the
two logicist claims also constitutes the major grounds for the rejection of for-
malism. This arises from Gadel’s ([1931] 1967) first incompleteness theorem,
which establishes that deductive proof is insufficient for demonstrating all
mathematical truths. Hence the successful reduction of mathematical axioms
to those of logic would still not suffice for the derivation of all mathematical
truths. I shall return to this important result.

A further objection to the whole foundationalist enterprise of logicism,
and not to its implementation, concerns the certainty and reliability of the
underlying logical apparatus. This security depends on unexamined and, as
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will be argued, unjustified assumptions. Even if both of the logicist aims were
met, the overall program could provide totally reliable foundations for math-
ematics only if logic were absolutely secure itself. This is assumed but not
demonstrated by logicism.

The most important conclusion to be reached is that the logicist pro-
gram of reducing the necessity of mathematical knowledge to that of logic
failed in principle. Logic cannot provide a certain foundation for mathemati-
cal knowledge. Irrespective of the security of logic itself, the reliability of
mathematical knowledge cannot be reduced to that of pure logic.

Of course, as a mathematical research program in the foundations of
mathematics, logicism led to interesting and powerful theories and results. To
fulfill the first of its claims alone was a major achievement for modern math-
ematics. Thus from a mathematical perspective, logicism was very fruitful
and led to important successes. The logical definition of many mathematical
concepts, Russell’s theory of types, the explication of propositional and first-
order logic, the early development of proof theory, all of these are among the
successes of logicism. But as a philosophy of mathematics, and in particular,
as an epistemology seeking to provide mathematical knowledge with an
absolute foundation, logicism is without question a failure.

Formalism

In popular terms, formalism is the view that mathematics is a meaning-
less formal game played with marks on paper, following rules. Traces of a for-
malist view of mathematics can be found in the writings of Bishop Berkeley
([1710] 1962), but the major proponents of formalism are David Hilbert
(1964), early J. von Neumann ([1931] 1964), and H. Curry (1951). Hilbert’s
formalist program aimed to translate mathematics into uninterpreted formal
systems. These were to be shown to be adequate for representing all of math-
ematics by the creation of a restricted but meaningful (“finitary”) metamath-
ematics. Metamathematical proofs would show that the formal counterparts of
all mathematical truths could be derived in formal mathematical systems."”
They would also show, by means of consistency proofs, that the formal sys-
tems were safe for representing mathematics.

The goal of my theory is to establish once and for all the certitude of
mathematical methods. (Hilbert 1964, 135)

The formalist thesis comprises two claims:

1. Pure mathematics can be expressed as uninterpreted formal systems in
which the truths of mathematics are represented by formal theorems.
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2. The safety of these formal systems can be demonstrated in terms of their
freedom from inconsistency, by means of metamathematics.

These are very precise claims. However, Kurt Godel’s incompleteness theorems
(Godel [1931] 1967) showed that the program could not be fulfilled. His first
theorem showed that not even all the truths of arithmetic can be derived from
Peano’s axioms (or any larger recursive axiom set). This proof-theoretic result
has since been exemplified in mathematics by Paris and Harrington, whose ver-
sion of Ramsey’s theorem is true but not provable in Peano arithmetic (Barwise
1977). Thus the first claim of formalism is refuted in a profound way. It is not
possible to translate nontrivial axiomatic theories into formal systems, so that
the truths of mathematics are represented by formal theorems.

The second incompleteness theorem showed that in the desired cases
consistency proofs require a metamathematics more powerful than the system
to be safeguarded; thus there is no safeguard at all. For example, to prove the
consistency of Peano arithmetic requires all the axioms of that system and fur-
ther assumptions, such as the principle of transfinite induction over countable
ordinals (Gentzen 1936). Thus it is not possible to prove the consistency of
most formal systems of mathematics without, in effect, assuming it. In terms
of fulfilling its program, formalism must be regarded as a failure.

The formalist program, had it been successful, would have provided
support for an absolutist view of mathematical truth. For formal proof, based
in consistent formal mathematical systems, would have provided a touchstone
for mathematical truth. However, it can be seen that both the claims of for-
malism have been refuted. Not all the truths of mathematics can be repre-
sented as theorems in formal systems, and furthermore, the systems them-
selves cannot be guaranteed safe.

Since the refutation of Hilbert’s formalist program by Godel’s results,
formalists, like the logicists before them, have retreated to a number of
weaker positions. Curry (1951), for example, relinquishes the second claim of
formalism but maintains a version of the first claim to the effect that mathe-
matics is the science of formal systems. But this position is insupportable as
a philosophy of mathematics, for formal systems capture only a proper subset
of mathematical knowledge, omitting constructive or recursive mathematics.

Although formalism has been refuted in this way, a number of mathe-
maticians still regard themselves as formalists. For example A. Robinson and
P. I. Cohen have written in this vein, as has Henle (1991) more recently. How-
ever, few if any try to maintain the refuted foundationalist or epistemological
claims of formalism. More often it is the anti-realist ontological position of
formalism that commands their support.

Quine (1953a) and Putnam (1972) point out the strong parallel between
formalism and nominalism, which latter position originates in the medieval
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thought of the Schoolmen. Nominalism focuses on the symbolic function of
language and, like formalism, denies that it denotes real universals or abstract
entities. Thus although there is an illuminating analogy here, it is more rele-
vant to ontological matters than those of epistemology.

Formalism, and related research in the foundations mathematics, can be
judged from two perspectives, philosophical and mathematical. Philosophi-
cally, however interesting and important it might be historically, formalism is
a failed attempt to provide mathematical knowledge with absolute founda-
tions. Particularly in epistemological terms, the formalist program has been
shown to be impossible.

In mathematical terms, the program has led to the development and
clarification of axiomatic systems, especially set theory, proof theory, and
metamathematics, and has contributed to the development of recursion theory,
Turing machines, the lambda calculus, and other aspects of formal mathemat-
ics vital for the theory of computation. These indicate some of the powerful
and important mathematical outcomes stemming at least in part from formal-
ism. Thus mathematically, formalism was a very successful research program.

Constructivism

The constructivist strand in the philosophy of mathematics can be traced
back at least as far as Kant and Kronecker (Korner 1960). Kant ([1781] 1961,
[1783] 1950), developed an elaborate system of philosophy based on a number
of universal mind-given categories of thought, including space and time. He
regarded the knowledge of geometry and number as arising from the unfolding
of our intuition within these two categories. This gives rise to what he termed the
synthetic a priori truths of Euclidean geometry and number theory. After Kant’s
death, the advent of non-Euclidean geometries led many of his followers to
abandon the notion that Euclidean geometry consists of synthetic a priori truths,
derived from the pure intuition of space. However the modern intuitionists such
as Brouwer still maintain the other plank of Kant’s doctrine. That is, the truths of
number are synthetic a priori and stem from our basic intuition of time. The
attraction of this view is that it anchors mathematical knowledge, at least that of
arithmetic, in intuition, guaranteeing its personally meaningful nature.

Against this background, the constructivist program is one of recon-
structing mathematical knowledge (and reforming mathematical practice) in
order to safeguard it from loss of meaning, and from contradiction. To this
end, constructivists reject nonconstructive arguments such as Cantor’s proof
that the real numbers are uncountable, existence proofs by reductio ad absur-
dum, and the logical laws of double negation and the excluded middle."® For
these results and modes of reasoning take mathematics beyond what can be
constructed intuitively.
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