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Introduction

Thinking the Parthenon 
and Liberal Arts Education Together

Michael Weinman and Geoff Lehman

This work is simultaneously expansive and narrow in its scope. It is 
expansive in that it takes up three objects that would generally be 

thought to diverge widely: (1) the early history of Greek mathematics; 
(2) Plato’s Republic and Timaeus, in conversation with the program of 
study in the early Academy; and (3) the Parthenon. It is narrow in that it 
investigates each of these objects with respect to Philolaus’s interdisciplin-
ary research into number theory, astronomy, and harmonics. This narrow 
thematic focus allows us to say something quite distinct about each of 
our objects, and then to relate them to one another. In this introduc-
tion, we discuss possible connections between sixth- and seventh-century 
BCE Greek mathematics and earlier Near-Eastern predecessors to show 
the possible origins of Philolaus’s insights in these fields. In part I, we 
investigate Plato’s reception of Philolaus’s work to understand how dialectic 
and mathematics function both in Republic and Timaeus and in the intel-
lectual environment of the early Academy. In part II, we will present our 
reading of the Parthenon as a “vanishing mediator”1 between the earli-
est developments in Greek mathematics and the sophisticated extension 
of those early developments in Plato’s dialogues and the early Academy. 
Specifically, we will be concerned to show how the themes of Philolaus’s 
work (fl. ca. 440–410 BCE), roughly contemporary with the construction 
of the Parthenon, embodied in symmetria (commensurability) and harmonia 
(harmony; joining together), relate to the design features of the Parthe-
non (447–432 BCE) as they make manifest the theological (ontological) 
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and civic (educational) meaning of the building. A brief afterword will 
advance an understanding of the relationship between humanist learning 
and technical achievement through procedural knowledge that we believe 
shows how one might see a continuous development from the earliest 
advances of Greek mathematics through fifth-century developments such 
as Philolaus and the Parthenon through to Plato’s Academy, looking also 
at the analogous situation in the Renaissance. 

1. The Parthenon as an Institution  
of Liberal Arts Education 

We propose here to pursue a method of speculative reconstruction to detail 
what can be learned about the “state of the art” in the early development 
of “liberal education” in fifth-century Greece. One needs to be cautious 
in speaking about such a development at such a time, which predates 
the establishment of any independently operating institution that might 
naturally be thought to pursue such an educational project in today’s 
terms. The Parthenon, the foremost example of the practical application 
of mathematical knowledge in the mid-fifth century, insofar as it displays 
the cultural milieu in which mathematical knowledge was growing in both 
sophistication and in audience at the relevant time, can be understood as 
such an institution for liberal arts education. Specifically, coming to see 
the Parthenon as a manifestation in material form of the quest to achieve 
a formal integration of the mathematical arts points to a way in which 
liberal education has been, and could now be, a vital part of the civic 
life of a democratic society. The Parthenon is both the work of a well-
educated group of theoretician-practitioners of mathematical knowledge 
and a work for the cultivation of a certain kind of generally educated 
citizen. Understood in this light, it helps us see the roots of the trivium 
and quadrivium2 as they later came to be classically conceived. 

Before we attempt the comparative analysis of the Parthenon’s design 
features as a mediator between the earliest, scarcely documented sources 
of Greek mathematics and the liberal arts curriculum in the Academy, 
we ought perhaps to say a word about why its status as such a mediator 
did in fact vanish. That is, if the elements that emerge from our reading 
of the Parthenon are really there, why don’t the innovations in the 
Parthenon produce an explicit and immediate textual response? We feel 
this dilemma relates directly to the nature of the building as art object 
and as sacred space. As we will discuss with specific reference to elements 
we focus on later, the building does “theoretical work” in ways specific 
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to the experience of a work of art, ways that need not, and ultimately 
cannot, be fully articulated in words. In that sense, we would not expect 
to find contemporaneous textual discussion of the theoretical work that 
the building is doing. Rather, as we see in Plato’s dialogues, analogous 
theoretical problems emerge in later texts, not so much through direct 
“influence” but through broader and more indirect connections that arise 
from their shared intellectual culture. This is similar to the situation in 
Renaissance Europe, when perspective pictures, made for a sacred context, 
involve specifically pictorial theological interpretations (i.e., not merely 
duplicating what texts can do), and also implicate epistemological paradigms 
that would emerge in more fully theorized and elaborated forms in later 
centuries (e.g., in Cartesian epistemology).

With so much said for the basic orientation we bring to the Parthenon, 
let us now reflect briefly on the history of the liberal arts as Plato came 
to give them determinate form. “Pythagoras introduced the quadrivium 
to Greece.” This traditional understanding—this “creation myth”—of 
Pythagoras as the first philosopher is attested very early in the classical 
canon.3 Indeed, though the text is very understated, Plato’s observation 
in Book 10 of the Republic4 that Pythagoras, like Homer, was hailed as a 
“master of education” seems to point to an already-established view that 
holds Pythagoras as a model of what Aristotle already refers to as “liberal 
education.”5 Our suggestion is that the procedure we will follow in our 
analysis—testing a formal understanding (here: the mathematical theme 
of reconciling arithmetic and geometry through harmonics) against a 
material object (here: the Parthenon itself in its architectural and sculptural 
program)—is precisely the model that Pythagoras introduced as a “model 
educator,” and the one that inspired the design of the Parthenon. 

To cite just one (especially illuminating) example: if we look at the 
dimensions of the Parthenon’s stylobate, we see that they were quite likely 
determined by a method, standard for Doric architecture in the first half 
of the fifth century, based on intercolumniations five times the width of 
the triglyph, that is, on a 5:1 (80:16) ratio of intercolumniation to triglyph. 
There is an important difference, however, in the case of the Parthenon: 
the continuous proportion from which the façades and flanks of the 
building were constructed gives a 81:16 ratio between these elements, as 
two elements in a continuous proportion of intercolumniation to lower 
column diameter to triglyph width, where the full expression is 81:36:16 
(this is a continuous proportion since 81 and 36 are in the same ratio as 
36 and 16).6 The refinements involved with fitting these two slightly 
different constructive principles together—that is, these two different forms 
of symmetria (commensurability)—is a first instance, among many others 
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we will investigate in detail, where we encounter the problem of harmonia 
(harmony, i.e., “joining together”) in the Parthenon. 

One important consequence of the repeated use of this particular 
continuous proportion, at various scales, is that it allowed for the building’s 
overall cubic proportions, in the continuous proportion of 81 (length) : 36 
(width) : 16 (height) to have as its unit the real, visible triglyph module.7 
Focusing for the moment only on the two most remarkable features of 
this innovation—adapting the 5:1 (80:16) ratio to the mathematically 
much more interesting ratio of 81:16 and the even more remarkable 
offering of the visible triglyph module as the unit for the building as 
a whole—two points emerge. First, the remarkable sophistication of the 
theoretical reflection at work in the monument’s design becomes in a 
literal sense visible. Still more strikingly, we believe, the designers made 
this sophistication accessible to the temple’s audience, which is ultimately 
the whole city, by weaving these formal features into our sensory and 
embodied experience of the building. 

Through this careful consideration of the educational program behind 
the design of the Parthenon and in its role as a form of civic education, 
we hope to show that the practical arts played a key part in the birth 
of liberal arts education. The well-rounded education that came to be 
programmatic in the Academy has as its proximal antecedent the practical, 
but not merely practical, education in the arts that the planners of the 
Parthenon brought to bear in and through its construction. More than 
anything else, this antecedence manifests itself in the elegant interrelation 
of the soon-to-be-canonized mathematical arts of arithmetic, geometry, 
astronomy, and harmonics in the building’s constructive program.8

Both to shed light on the notion that the Parthenon is a vanishing 
mediator in this sense, and by way of concluding this statement concerning 
the significance of our project at large, we would like to address three 
fundamental criticisms to which our entire method of speculative 
reconstruction can reasonably be subjected. 

First, a more hard-headed historian might object that even if we 
can “read” the Parthenon as it stands as being the site of the “integrated 
mathematical arts” as they are canonized in the fourth century, this does 
not, in light of the total absence of other primary source documentation, 
give us reason to be certain that any significant portion of the people who 
designed and built the temple had any awareness of the presence of these 
features or the capacity to appreciate them. Even less, the criticism could 
continue, do we have grounds to believe such features to be among the 
principles of its organization. In response, we would point to the intensity 
of the reflective awareness the design program displays, also in comparison 
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with Doric temple design before and after the Parthenon. This suggests 
that the problems we will discuss in detail below were on the minds of 
those responsible for the building, and are not a projection back onto it. 
If that is possible, then we hope to show it is also plausible that some 
significant portion of the “knowledge workers” assigned to this commission 
had a reasonably advanced understanding of principles not yet recorded in 
the works of theoretical mathematics from the mid-fifth century. We also 
aim to show that the Parthenon as designed intends for its audience—or 
at least a considerable part (the “educated” or cultivated part, those versed 
in mousikē, the works of the muses) of that audience—first, to recognize 
the presence of these problems, and then, having recognized them, to 
“educate themselves” in a manner not dissimilar to how Socrates defines 
dialectic as the “art of turning around the whole soul” (Resp., 7.518d). 

But, our interlocutor might insist, would it really have been the case 
that any number of people involved either in the design and the construction 
of the temple, or in visiting and making use of the space once built, would 
have had any access to, or interest in, the features on which we focus 
here? To this we would reply: the character of the Parthenon as a work of 
art, and not a theoretical written text, is crucial (and we mean “work of 
art” here in the broadest sense, not “art for art’s sake” but an idea of art 
inclusive of the building’s religious meaning and function). The building 
creates an encounter with every receptive viewer, whatever his or her 
educational background or degree of specialized knowledge, an encounter 
that is ultimately irreducible to an entirely verbal, or entirely mathematical, 
articulation. That encounter is first and foremost an embodied and sensory 
one, within which the mathematical and ontological questions the building 
raises are embedded, but it is never fully reducible to those questions. The 
analogy with music may be helpful here: in music, one can experience 
harmony, and have an emotional response to it, without understanding the 
mathematical principles involved; likewise, those mathematical principles 
themselves are not adequate to explain the ineffable character of music, 
even if they are its foundation. Thus, we can imagine that one viewer 
may experience symmetria and harmonia in a strictly intuitive way when 
encountering the Parthenon (symmetria in the well-ordered and pleasing 
proportions of the design, harmonia in the sense of a complex of parts 
holding together as one thing and in the beauty of the whole); another 
may connect those experiences to the religious and/or civic significance 
of the monument; another may speculate on the building’s mathematical 
character and even be inspired to count and measure; and another may 
consider the relationship between arithmetic and geometry, reflect on the 
philosophical question of harmonia, and be led toward dialectical thought. 
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This last group would probably be a small number of people, and 
the first group would probably be the largest. Also, many of those involved 
in making the Parthenon may have had specific technical knowledge that 
need not have involved awareness of all the larger philosophical questions 
we raise in the book. Still, such knowledge—for instance, a stonecutter’s 
knowledge of the required proportions and refinements of individual stones, 
and how to produce them—is a first step in that direction. Certainly, 
any account of the specific number of people who had access to these 
different kinds of knowledge would be purely speculative, at least within 
the scope of this project, but one’s intuition that the fullest intellectual 
and philosophical engagement with the building would have inevitably 
involved a relatively small number of people (Pythagoreans or otherwise) 
seems right. All the same, the range of experiences that the building 
produces, from the most direct and unconscious to the most reflective 
and theoretical, seem crucially related.

Thus, understanding the Parthenon rightly is possible only when 
we appreciate the role of practical exposure to “problems in the arts” in 
a liberal education generally. This, we want to suggest, holds not only 
for this “institution of liberal education”; actually all institutions pursuing 
such a program of education have an interest in exposing the students 
in their care to such problems. Education in the liberal arts originated 
from a dialectical reflection on problems in the practical arts and more 
abstract thinking about them, as found in what we would now call “the 
exact sciences.” Such education, in principle, ought always to be versed in 
such reflection. Or, more baldly still: humanities students ought to have 
enough quantitative competence to understand what questions in the 
exact sciences remain open and why they remain open. That, we believe, 
is the role of the problem-based study of mathematics in the Parthenon, 
and it is relevant as much for us today as for those who designed, built, 
and worshipped in the Parthenon.

Even if one is willing to accept our basic two-point hypothesis 
about the Parthenon as an institution of liberal education, and its corollary 
for liberal education more generally, though, there remains the following 
worry: what does the scholarly consensus tell us about the state of the 
art in Greek mathematical knowledge in the mid-fifth century, and does 
that consensus tell against our hypothesis? Is it really the case that much 
of what was known by the time Plato wrote the Republic (say 380 BCE) 
was in fact already known by a fair number of skilled artisans by the time 
the Parthenon was designed and built some sixty-five years earlier? Our 
reply begins by noticing that perhaps it was known but not demonstratively 
known, or put another way, known but not yet subject to deductive 
proof. This last concession is potentially decisive, as we hope to show. 
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Scholarly consensus holds that formalized proof like what we read in 
Euclid was entirely absent from Greek mathematics until at least the time 
of Plato’s death. This does not, however, tell against our hypothesis that 
many of the most important findings first demonstrated in Elements—and 
crucial among these for us would be the propositions concerning mean 
proportionality, continuous proportion, and how these relate to square and 
cubic numbers—were in fact widely but perhaps not “demonstratively” 
or “formally” known by the middle of the fifth-century.9

Finally, even if our less-given-to-speculation colleague is convinced 
that our approach survives these two plausibility tests, there remains the 
following concern: such a well-developed community of practitioners of 
such knowledge would surely have produced some kind of traceable work 
that should inform us of who they were and what their research problems 
and possible solutions were. Why then, the objection would go, are we 
entirely without any documentation of these groups, of their participants’ 
names and their findings? To this objection, we have two replies. First, the 
Parthenon itself is the primary source documentation of the community 
of researchers, whose research method was to work on the problem by 
designing the structure, and thus “publishing” their results not in a journal 
for specialists, but for everyone to experience in their civic, religious, and 
individual encounter with the building (which was a temple, built for the 
city as a whole with funding that the city secured from a mix of public 
and private sources). Second, while we believe that existence of one or 
more treatises having been written by the principal designers is entirely 
unnecessary to the argument, since the Parthenon speaks for itself, it does 
merit notice that Vitruvius refers to a book on the Parthenon by Iktinos 
and “Karpion” among a list of ancient architectural treatises, all now lost, at 
the beginning of Book VII of De architectura.10 We will probably never know, 
but it is not impossible that this treatise was (or was in part) something like 
a guidebook to understanding the Parthenon as a site for solving problems 
in the interdisciplinary practice of mathematical arts. If this is so, then the 
formal analysis we will provide in part II might best be understood as akin 
to what this treatise would have presented. In short, we hope to show that 
the designers of the Parthenon saw their creation this way, and that they 
did so because of their vision of what we might call a liberal education. 

2. The Parthenon and the Historiography  
of Greek Mathematics 

If we are right in what we say elsewhere, then the relevant historiography 
needs to be amended at least to acknowledge that there was a foundational 
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understanding of (at least) two mathematical objects generally thought to 
be understood in a reflective way for the first time in the mathematics 
of the first decades of the fourth century: continuous proportion (and its 
non-reducible-to-a-unit-or-multiples-of-a-unit correlate, anthyphairesis) and 
the relationship of the geometric and harmonic mean (a reflection that 
seems to arise from thinking about the double square and the issue of 
incommensurability).11 Also, as we show in the work on the building itself 
(part II), its design entails a substantial theoretical reflection on the nature 
of the unit as constructed or discovered. Our suggestion in what follows 
amounts to this: if these features are present in the building, then it seems 
likely that Szabó (1978) was not mistaken in his central suggestion. We 
thus explore how it can be shown that more was known, in some sense 
on a theoretical level, at an earlier date than the standard story, offered 
by Knorr (1975), holds. 

We very much share the view of Cuomo (2001) and Netz (1999, 
2002) that the history of Greek and ancient mathematics cannot be pursued 
without constant back-and-forth attention to theoretical understanding and 
actual, practical use, as reflected in artefacts related to specific contexts, like 
the marketplace and the temple, the household, the state administration, 
and the library.12 Drawing on this methodological perspective, our 
contribution to the historiography of Greek mathematics proceeds in three 
movements. First, we recall the general contours of the debate between 
Szabó (1978 [1969]) and Knorr (1975), both presenting a few of their 
key disagreements and discussing the rough consolidation of a position 
more or less like Knorr’s. We will flag the somewhat provisional nature 
of this consolidation and the fact that all agree we could understand the 
pre-Euclidian period better—here following Cuomo (2001), Christianidis 
(2004), and Netz (2002, 2014). Next, we explore the possibility that 
both sides of the debate have an overly narrow view of the relationship 
between practical mathematical knowledge and its theoretization. This 
can be ameliorated, first, by attending to the central suggestion of Fowler 
(1999) regarding logistikē (and anthyphairesis in particular) in the theoretical 
mathematics of the early Academy and, second, by reopening the question 
of possible “legacies” of Near-Eastern mathematics in the theory as well as 
the practice of mathematical procedures. In the third and final movement 
of this section, we present an open-minded reading of the features that 
we elsewhere claim to be at the heart of the design of the Parthenon. 
By the end of this effort, we hope it will be accepted as possible that the 
Parthenon was designed by skilled artisans whose theoretical understanding 
of “cutting-edge mathematics” was great enough to have accomplished 
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something that the present-day historiography of mathematics believes to 
have only been possible after the work of Theaetetus, Archytas and Eudoxus. 

A return to the Szabó-Knorr debate is crucial for telling a story about 
the historical development of the theory of incommensurability, which 
itself seems central to pre-Euclidian mathematical knowledge. Two central 
components of Szabó’s analysis are relevant. The first is his thesis that there 
was much more of a theoretical development in Greek mathematics during 
the fifth century than is acknowledged by the (then, and mostly now) 
conventional view that theoretically advanced mathematics began only in 
the early fourth century.13 The second is his view of the chronological 
and doxagraphical priority of music theory; while all parties agree that 
the integration of work on number and work on geometry belongs to 
the early decades of the fourth century, Szabó (1978: 108–78) insists that 
this theoretical integration and advance was built on the basis of a prior 
theoretical achievement within music theory that developed out of musical 
practice and was already mature in the first half of the fifth century. 

Through attention to the development of the three central 
mathematical disciplines (harmonics, geometry, and number), Szabó aims 
to show that even if nothing like the formal proof had developed in the 
mid-fifth century, by the time of Philolaus and Hippocrates there was 
already a rich tradition of truly theoretical mathematics. In particular, Szabó 
(1978: 14–33) argues that the crucial step in proving incommensurability 
dates to Hippocrates, whom he dates to having been active in Athens 
around 430 BCE. 

This claim hinges on three subsidiary claims. First, according to 
Szabó (1978: 14), the construction of the mean proportional on a straight 
line—recorded as Proposition VI.13 in Elements—was already known by 
the time of Hippocrates. Second, the oldest demonstrative reasoning in 
proving mathematical truth is Epicharmus’s theory of odd and even, dated 
“fairly accurately” (Szabó 1978: 25) to ca. 500 BCE. This is crucial because 
“this theory clearly culminated in the proof of the incommensurability 
of the diagonal and sides of a square.” Third, provided sufficient attention 
is given to the integration of the three mathematical disciplines (Szabó 
1978: 26–28), a chronology can be established (Szabó 1978: 28–29) that 
proceeds thus: 

 1. Musical theory of proportion, from which the terms of 
Eudoxan proportionality were borrowed. This first stage has 
two phases: (a) experiments with the monochord, giving 
rise to terminology for 2:1, 3:2, 4:3; (b) development, by 
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this means, of the technique of anthyphairesis (which Szabó 
translates as “successive subtraction”). 

 2. Application of the “musical theory of proportions” to arith-
metic (along the lines of what is formalized and recorded 
in Elements, Books 7–9). 

 3. Application of this proportion theory to geometry. This was 
done “of course” at “the time of the early Pythagoreans,” 
working with the construction of the mean proportional. 

 4. Development of “mathematics within a deductive frame-
work,” here speaking of Elements and its concomitant the-
ory of proof.

Szabó (1978: 29) stresses two points about this chronology. First, if things 
did proceed this way, then quadratic incommensurability “must have been 
known well before the time of Archytas.” Second, “the discovery of incom-
mensurability is due to a problem which arose originally in the theory 
of music.” Of course, “knowing well” can mean a number of things, as 
critics of Szabó have pointed out. In proceeding, we suggest that “know-
ing well” be taken to mean that there was a deep theoretical engagement 
with this issue, embracing its relevance for all three emergent mathematical 
disciplines—geometry, arithmetic, and harmonics. 

Szabó’s chronology, and the “priority argument” in the development 
of a proof of incommensurability that it entails, involves Szabó (1978: 
33–84) in a very extended argument to the effect that it is a mistake to 
attribute to Theodorus and to Theaetetus the decisive role in the proof 
of incommensurability in the period 410–370 BCE. Szabó’s claim rests 
primarily on two grounds: (1) a philological argument focused on his 
understanding of the use of the term dunamis (as “square,” “power,” and 
so on) in mathematical texts from the earliest surviving fragments down 
to Euclid; (2) an interpretive argument concerning Plato’s complicated 
intentions in associating the discovery of a proof of incommensurability 
with these two men in the dialogue that bears the younger man’s name. 
Without entangling ourselves too much in these arguments—which have 
not proven persuasive14—let us briefly state the decisive moment in each 
of these arguments for Szabó. We will then discuss the basis of criticism 
thereof, and why we think we ought to consider this an open question.

Szabó (1978: 48) summarizes the philological argument this way: 
“Thus our previous conjecture to the effect that dynamis and tetragonismos 
originated at the same time inevitably leads to the conclusion that the 
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creation of the concept of dynamis must have coincided with the discovery 
of how to construct a mean proportional between any two line segments.” This is 
the crucial link for Szabó (1978: 50–54), insofar as he holds that Hippocrates 
(and not Archytas) originated the proofs about mean proportionality. In 
other words, Szabó believes the term “dunamis” began signifying “extent-
in-square” at the same time that it was learned that one could practically 
construct a square by means of the mean proportional between two line 
segments. If this is true,15 and if it is also true that Hippocrates was the 
first to publicize “proofs” (perhaps only informal proofs) concerning the 
mean proportional, then we can be confident that the crucial step in 
proving incommensurability in fact dates to around 430 BCE and not 
410–370 BCE. 

The second support for his chronology is the doubt cast on the 
centrality of Theodorus and Theaetetus. These arguments have not been 
well received, but we believe this has to do with hermeneutical questions 
involving the Platonic dialogue rather than any preponderance of historical 
evidence. We will re-present Szabó’s three main points in the hopes of 
showing that if we keep an open mind about how to read a Platonic 
dialogue—and see, for instance, Gadamer (1980, 1986, 1991), Griswold 
(2002), and Nikulin (2010, 2012a) and our discussion of them in chapter 
1, 1, on why we ought to—then we really ought to consider this matter 
very much open. We do not believe that Szabó “proves” that Theodorus 
and Theaetetus are not crucial for the development of a proof of the 
theory of incommensurability; we do believe, however, that he provides 
good reasons to doubt what reasons we have to accept their centrality 
in this story. First, Szabó (1978: 68–71) deploys a reading of the pun on 
“dunamei dipous” in Statesman 266a5–b1 to confirm that what Theaetetus 
describes in discussion with “young Socrates” (who also appears together 
with Theaetetus in Theaetetus) was common knowledge.16 Second, Szabó 
(1978, 76) argues that the mistaken attribution of significance mostly derives 
from two sources, which he spends five pages trying to debunk: first, 
an ancient Scholium on Elements X.9; second, “a report which probably 
stems from Pappus’ commentary on Book X and survives only in an 
Arabic translation.”17 Since both of these sources themselves rely mostly 
on a wrong-minded reading of the mathematics section (147c–148b18) 
of Theaetetus, Szabo (1978: 79) argues, there is no reason to see this 
attribution as anything other than a “false tradition.” Finally, Szabó (1978: 
79–84) presents a hermeneutical and philological analysis of the dialogue 
in the service of this answer: Plato presents Theaetetus as a very talented 
researcher, but also as young, naive, and overeager. The relevant section 
about the discovery of a theory of irrationals must be read in this light. 
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These arguments are surely not decisive, but neither are they decidedly 
wrong, we suggest. With them in mind, let us turn to Szabó’s second major 
concern: the central importance and chronological priority of musical 
theory, which inspired an analytical program in number theory, which in 
turn inspires a reflection on the (im)possibility of fully integrating number 
theory and geometry—the latter having developed separately, without prior 
integration with the other two disciplines. Szabó’s (1978: 108–78) account 
is that music theory arrives at the three means, and realizes there is no 
geometrical mean for the fourth, fifth, and octave. Then, approaching the 
double square, (Pythagorean) mathematicians discover mean proportionality 
between two lengths, whether numbers or not. Thus: music then arithmetic, 
then geometry.19 

Knorr (1975: 9), unlike Szabó, believes that “by the time of Hippocrates 
both [the theory of congruence and the theory of similarity (based on 
proportion)] were already well developed,” but that the combination of 
these two traditions (cf. Knorr [1975: 7]) began “only about fifty years 
later,” with the contributions of Eudoxus. Knorr (1975: 49) insists that 
“evidence in the pre-Socratic literature discourages dating [the] discovery 
[of the theory of incommensurability] before ca. 430. One may recognize 
only after that time signs of a dialectical interest in the problem of 
incommensurability.” The center of the debate, again, is in the interpretation 
of Plato’s Theaetetus.20 Knorr (1975: 116–7) argues against Szabó as follows. 
(1) Even if (the idea demonstrated in) Euclid VIII.18 is at work here, 
this only shows that “there is no integer which is the mean proportional 
between two terms that are not similar numbers,” which is not enough 
to establish incommensurability. (2) Szabó’s “view of the antiquity of the 
mathematics of the dialogue is an assumption,” against which Knorr (1975: 
82–86) has offered an argument, and which is not well supportable by 
the available documentary evidence. (3) Given Knorr’s own view of the 
relative novelty of any theoretical understanding (and certainly proof) of 
incommensurability, it is “at least a reasonable counter-assumption that the 
number-theoretic foundation, upon which Theaetetus and his successors 
built their theory of incommensurability, had not yet achieved an advanced 
form at Theodorus’ time.” Knorr here underscores what Szabó himself 
acknowledges: that the relative novelty or antiquity of the discovery is a 
matter of speculation that—so far as extant documentary sources go now, 
as then—will never be definitively settled. 

Given that the participants in the debate both acknowledge that 
definitive knowledge is impossible here, and that the matter is really about 
“who knew what when” within a fairly narrow research program in a 
relatively short time period, this might seem like a moot question—even 
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more so because there is not a “world of difference” between these two 
positions. Nevertheless, determining which, if either, is correct would be 
very telling for the argument we make about the Parthenon, because if 
Knorr is right that the kind of integration Szabó sees in Hippocrates was 
only done in the time of Eudoxus, then it becomes difficult to impossible 
to believe that this integration, which we argue is integral to the design 
of the temple, would even have been thinkable, let alone doable, in the 
period 447–432 BCE. 

So, we look for a way to advance this deadlock, and we turn to 
the role of anthyphairesis. Fowler (1999), asking different questions for 
different reasons, nevertheless focuses on just this knowledge procedure, 
and finds in it a suspicion of the “standard story” in the historiography of 
Greek mathematics. Fowler (1999: 4) notes that Knorr agrees with Szabó 
that “the theory of incommensurability will be perceived as contributing 
to important aspects of every part of the Elements, save for the oldest 
geometrical materials contained in Books I and III.” They do so because 
they are both committed to “the standard story” about the history of Greek 
mathematics, which runs something like this: “The early Pythagoreans based 
their mathematics on commensurable magnitudes (or on rational numbers, 
or on common fractions m/n), but their discovery of the phenomenon 
of incommensurability (or the irrationality of 2) showed that this was 
inadequate. This provoked problems in the foundation of mathematics that 
were not resolved before the discovery of proportion theory that we find 
in Book V of Euclid’s Elements,” while Fowler (1999: 4) “disagrees with 
everything in this line of interpretation.” 

For all that his account clearly owes to Knorr, Fowler’s work actually 
serves as a reason to believe that the kind of sophistication that Szabó 
sees as present a few generations earlier than Knorr really is manifest—
albeit with the crucial revision that it is not that “theoretical” advances 
occurred earlier than Knorr allows and as Szabó insists, but rather that 
mathematical practice was well “ahead” of its theorization and formalization, 
and thus that anthyphairesis and its insights were familiar to those working 
on the Parthenon in the middle of the fifth century. It may be that 
Fowler is entirely correct that much of what is traditionally viewed as 
“Pythagorean” mathematics had nothing to do with Pythagoras and his 
followers.21 It may also be true that nothing like (1) the formal theory of 
proportion in Elements, V22, or (2) the formal system of deductive proof 
presented in Elements as a whole23 had been seriously developed during 
the fourth century, let alone the fifth. All the same, by underscoring the 
centrality of anthyphairesis as a practice—especially in addressing problems 
in geometry (Theaetetus), in music theory (Archytas), and in astronomy 
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(Eudoxus)—Fowler provides welcome corroboration of our suggestion 
that the practicing mathematicians and mathematically informed artisans 
of the generations working at the time of the Parthenon’s construction 
used anthyphairesis as a means by which to test, geometrically, solutions 
to problems in harmonics. The “chronology debate” turns out to be 
intertwined with a much more fundamental debate about the very nature 
of Greek mathematics and its logical and methodological and ontological 
foundations. It becomes advisable, then, to reconsider the “foundations” of 
Greek mathematics. Christianidis (2004) provides the best overview of this 
issue, while Netz (1999, 2002) offers the most thoroughgoing analysis.24 

Our own view is that a more solid understanding of Greek 
mathematics depends on a better understanding of its relation to Near-
Eastern precedents. We wish to ask: What can we learn concerning the 
novelty or “revolutionary character” of classical Greek mathematics from 
the practice of anthyphairesis as it developed from the earliest (scantily) 
recorded sources of the sixth century through to its presentation in Euclid’s 
Elements? In answering this question, it is worth noting that while much 
is controversial about the degree of novelty in Greek mathematics, no 
one denies that there are some indications of contacts between Greek 
mathematicians (especially astronomers) and Near-Eastern counterparts, 
certainly by the fifth century (Meton), maybe even earlier (Hesiod).25 The 
best-established point of similarity is interest in dates of appearance of stars 
and constellation during the year, comparable to material in MUL.APIN, 
and already present in Greek sources of the eighth century.26 Given this 
evidence of overlap of “research problems” and particularly of calculative 
techniques and knowledge procedures, we will suggest that the early 
theoretical advances in Greek mathematics are unlikely to have developed 
sui generis, but rather built on the work of Near-Eastern antecedents. 

Netz (1999, 2002) and others are surely right that the formal-deductive 
framework of Greek mathematics beginning in the fourth century and 
proceeding therefrom is absolutely internal to the Greek tradition. All the 
same, we submit that both theoretical objects of mathematical knowledge 
and intricate mathematical procedures of great importance for the Parthenon 
were studied to a high degree of comprehension already by the mid-fifth 
century. If this is plausible, we further suggest that this is so not because 
of a burgeoning influence of “Greek-style” systematic, proof-theoretical 
knowledge procedures at that time, but rather through the reception of 
Near-Eastern antecedents. Specifically, interest in theoretical issues such 
as mean proportionality and periodicity and facility with practices such 
as anthyphairesis seem unlikely to have developed after the development 
of “Greek-style” mathematics that is largely a “fourth-century and later” 
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phenomenon, as in Knorr (1975) and Bowen (1984). It is also relevant 
that scholars generally accept Proclus’s account of Oenopides of Chios (fl. 
around and after 450 BCE) as the first to distinguish between theorems 
and problems, insist on geometry done only with a compass and a straight 
edge, and draw a perpendicular straight line from a given point to a 
given straight line. If this is true, it certainly signals a functioning and 
fairly mature context of theoretical mathematical knowledge production in 
Athens—that is, knowledge pursued solely for its own interest and without 
relation to physical and practical production—by the time of the design 
of the Parthenon.27 

It is impossible to avoid controversy in pointing in this direction28 
because the possibility of Near-Eastern influences on Greek mathematics 
of the Euclid type is very difficult to establish, partly because of the 
chronology (most of the evidence for Babylonian mathematics is early second 
millennium BC) and partly because the Greek deductive-demonstrative 
style of mathematics seems very remote from the algorithmic problem-
oriented style of the Babylonian texts. The current orthodoxy is that 
Babylonian mathematics is not closely relevant to the development of 
Euclidean mathematics. Specifically, this “orthodox account” holds that 
the “rediscovery” of the putatively unique and transformative nature of 
the progress in mathematical knowledge in and around Plato’s Academy 
during his lifetime and the century after, was integral to the develop of 
“mathematics as we know it,” which essentially began in this period. 
Integral to the development of this account in the nineteenth century—
and those works that followed through the middle decades of the last 
century—was the conviction that while practical mathematical understanding 
was developed much earlier and to a much greater extent in other places 
(especially Mesopotamia and Egypt) than in classical Greece, it was the 
Greeks alone who sought to develop a proper “theoretical” understanding 
of these mathematical objects. 

The orthodoxy, though, has been challenged, most directly and fully 
by Friburg (2007). As he notes in his preface, in searching for connections 
between Babylonian and Greek mathematics, he was compelled to offer 
very new interpretations of some of the thorniest issues in the debates 
internal to the historiography of Greek mathematics. Among other things, 
he comes to propose a new understanding of Book 2 of Elements that 
would (if true) resolve the debate about “geometrical algebra” by showing 
that what is at work in these propositions is not geometrical algebra, 
but an “abstract, non-metric reformulation” of “systems of equations in 
Babylonian metric algebra.”29 Similarly revisionist arguments are made with 
respect to some of the problems relevant for our project, such as Book 
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10 propositions on irrationals (addressed by Friburg in chapters 3–5), and 
possible Babylonian sources for Hippocrates’s work (chapter 12)—which is 
especially interesting for a possible full rehabilitation of Szabó’s argument 
concerning “Hippocrates v. Archytas” in the first elaboration of mean 
proportionality. Like Friburg, we would suggest that this approach seems 
reasonable since grounds for rejecting influence seem to us (as to him) 
more based on prejudice than reason. 

Philolaus (ca. 475–ca. 385 BCE30) is a central figure for the questions 
raised in this section, and thus makes for an excellent case study in 
attempting to address them. First, his intellectual career closely coincides 
with, if largely slightly postdates, the design of the Parthenon, and shows a 
concern for precisely the kind of integration of the mathematical disciplines 
organized thematically around “harmony” that we find there. Moreover, 
while we will primarily focus on another discovery or invention that is 
attributed to him, the “Pythagorean Tuning” that is classically preserved 
in (what Huffman [1993] refers to as) Fragments 6/6A of Philolaus’s 
On Nature is integral to the mathematics of the Parthenon, as we show 
elsewhere. Finally, his work carries a distinct trace of what Babylonian 
mathematics did best and the field in which the best evidence of contact 
between Greek and Near-Eastern mathematics has been located: astral 
science—specifically, in the theory of the moon, the theory of the sun, 
and the position of the ecliptic.

Take the case of Philolaus’s “great year.” Huffman (1993: 276–79) 
provides a thorough account of what is known about this intellectual 
achievement, which purports to name the period within which solar 
years coincide with lunar months: namely, 59 solar years (where each solar 
year has a value of 364½ days), or 729 lunar months (where each lunar 
month has a value of 29½ days). As Huffman (1993: 277) pointedly says: 
“The crucial question is how did Philolaus arrive at this set of numbers?” 
Huffman considers two main alternatives, one in which Philolaus is adopting 
and adapting the value that Oenopides (mentioned above, and a slightly 
older contemporary of Philolaus) had arrived at: 730, and the other in 
which he derives it directly from recorded observations. If he revised an 
earlier value, the supposition goes, this could be either because of some 
preference in working with the observations—like the value it gives for 
the solar year (of 364½ days, rather than 36522/55 days—or because of the 
inherent attractiveness of 729 as the square of the cube of 3.31 

This all seems quite right as far as it goes. But it also seems clear 
that the central motivation of the entire enterprise that would lead you to 
posit a “great year”—which Huffman (1993: 276) identifies as “an attempt 
to harmonize two important ways of measuring time, the lunar month 
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and the solar year”—is not sui generis within Philolaus’s cosmology, or 
within Pythagoreanism. Both the observational data and the idealized values 
with which Philolaus and his Greek contemporaries were working came 
to them from Egypt and Mesopotamia. Given this fact, Huffman’s analysis 
leaves aside a possibility worth serious consideration. Namely, is it not 
possible that solar year and lunar month periodicity presses itself on these 
fifth-century Greek sources through the determination of the same issue 
in the Babylonian astronomical work of the seventh and sixth centuries? 

While it is difficult to establish connections for the reasons stated 
above, here is an instance where we have Babylonian source materials—
specifically “goal-year tablets,” which make predictions of where certain 
heavenly bodies will be at certain times in a given year, and “lunar 
prediction tablets,” which focus on the moon over long periods—from 
the time in question. Since the 1990s, a great deal of work32 has been 
done on exemplars of this tradition that have been definitively dated to 
the period (e.g., tablets from ca. 642–640 BCE, 593 BCE, 523 BCE) and 
others whose dating is not precisely known but date from some time not 
earlier than the fifth century BCE and not later than the third century 
BCE. These texts display two features that relate directly to the question 
Huffman raises concerning Philolaus’s process in arriving at his value for 
the Great Year. 

The first is an interest in what Huffman (1993) calls, with respect 
to Philolaus, the “harmonization” of the solar year and the lunar month. 
In the case of Mesopotamian astral science,33 there was a long tradition 
of interest in this. While the underlying motivation of the Near-Eastern 
precedent displays a significant difference from what we can glean as being 
Philolaus’s motivation, the observational data with which Philolaus and 
his contemporaries could seek out significant number patterns is surely 
owed to this earlier tradition. But Greek astronomers and mathematicians 
probably received a good deal more than just the data. For instance, 
bearing in mind the work of Huber and Steele (2007) on the so-called 
“Saros function”—an eighteen-year solar cycle—that is transmitted in 
lunar prediction tables dated to 642–640 BCE, and also the work of 
Britton (2002) on a lunar prediction table (dated to ca. 620 BCE) that 
uses a twenty-seven-year solar cycle, one detects a strong consonance 
between Philolaus’s interest in powers of three and the repeated thematic 
and methodological use of multiples (and especially powers) of three in 
these Near-Eastern antecedents of which Philolaus or those with whom 
he worked might well have been aware.

The second noticeable similarity in the research projects of Philolaus 
and Near-Eastern astronomy of the seventh through fifth centuries is the 
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direct interpretation of data as itself an object of observation. This appears 
to have been the hallmark of Babylonian astral science in particular: 
already by the seventh century, we see the development of what is called 
the “linear zigzag function,” which describes the pattern that emerges 
on a table inscribed on these tablets, given the values for mean speed 
(for moon, sun, or both) through the phases of the moon over a period 
of solar years. From especially the fifth century on, this sort of function 
is used to give sequences of numbers tabulated for equidistant intervals 
of time, from which periods could be calculated, and eclipses could be 
predicted. This back-and-forth procedure from tabular data to worldly 
phenomena became integral to Greek mathematics, especially astronomy. 
For instance, as Evans (1998) relates, Hypsicles (in a lost astronomical 
work) used Greek mathematical rhetoric of a Euclidian kind to present 
precisely Babylonian values of the “linear zigzag function” for the mean 
speed of the sun and the moon. We do not have a record of precisely 
when Greek mathematicians began working with the periodic functions 
of Babylonian astronomy. But given the contacts we know to have been 
established between the seventh and fifth centuries, there is no reason to 
believe that Hypsicles or his contemporaries were receiving the zigzag 
function for the first time. In any case, the interest in periodicity, and 
the habit of noticing periodicity in data directly, and then bringing it to 
objects of observation or construction is shared by the Near-Eastern astral 
science of the seventh century and Philolaus.

This brief investigation of how Philolaus’s “Great Year” calculation 
can at best provide a test case for both the plausibility of a development 
in fifth-century Greek mathematics that is continuous with Near-
Eastern predecessors and the interpretive possibilities this allows within 
the framework of contextualizing the (very scantily recorded) Greek 
mathematics of this period; it does not, we know, prove anything. It does 
suggest that the current, and continuing, inquiry about the development 
of Greek mathematics at the time of the design of the Parthenon could 
benefit from a more extended comparative analysis of the kind we have 
initiated here. What’s more, it should at least be clear that the kind of 
knowledge procedures employed in the “algorithmic problem–oriented” 
style of Babylonian mathematics of these centuries is significantly similar to 
Greek mathematical procedures prior to the formalization and introduction 
of deductive proof in the fourth century. 

Noticing the relevance of a problem-based, “trial and error” approach 
to theoretical mathematics that links the work of Philolaus to mathematical 
practice in the seventh- and sixth-century BCE Near-Eastern astral 
science provides insight into how mathematical knowledge procedures 
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functioned in the Parthenon. We see in the temple’s design precisely the 
kind of “algorithmic problem–oriented style” we know to be the hallmark 
of Near-Eastern approaches. Analyzing the mathematically informed 
features of the Parthenon design, it seems quite likely that the process of 
coming to these design features is through the reflective deployment of a 
variety of instruments derived from “algorithmic problem–oriented style” 
mathematical practice. If that was happening in Athens at the time of the 
temple’s design, it seems natural to ask: How did they know how to do 
this? Why did they choose to do so thus? We conclude this introduction 
with a first approximation of an answer to this question, which serves as 
the basis for the sustained analysis offered in part II.

On the hypothesis (1) that the mathematical features we find in the 
Parthenon are really there, and (2) the central findings of this introduction 
so far are plausible, we now close with an account of why the mathematical 
features in question might have been introduced to the design of the 
Parthenon. We begin by recalling the “Plato and the mathematicians” 
discussion,34 in which the use of the difference in methodology between 
one kind of mathematics and another is key for understanding Plato’s 
critique of the (Greek) mathematicians (of his time) in Republic 6 and 7 
(510c–d, 528b–d, 529b–c, 529e–30b, 531b–c).35 What light is shed on these 
conversations by the findings of the second section of this introduction 
concerning “Babylonian-style” math and “Greek-style” math? Plato argues 
that by simply applying their procedures, which they treat as granted setting-
stones (hypotheses), without questioning their principles, they are guilty of 
doing least what mathematics has the greatest possibility to achieve: leading 
us to the forms. Interpreters will probably continue to debate the exact 
nature of Plato’s critique and what it means about his own mathematical 
understanding and the actual practice of the mathematicians of his time, 
and we offer a fuller treatment of this in chapter 3. Here, we simply 
note that the determination of what exactly the mathematical practice is 
that Plato’s Socrates critiques in Book 7 of the Republic shines a light on 
the question of possible continuities between the mathematicians Plato is 
criticizing and the Near-Eastern mathematicians that the second section 
has tried to show at least might have had an influence on them. 

Further contextual light is thrown on this matter by thinking 
through Proclus’s account of the debate between what we can call the 
“constructivist” and the “realist” philosophies of mathematics within the 
Academy. By teasing out the background of these positions with the 
epistemology and ontology of mathematical objects, we can see how the 
constructivist approach maps onto the practical-procedural approach we 
have explored with respect to the Near-Eastern precedents of early Greek 
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mathematics, while the realist approach relates to the development of formal-
deductive procedures that decisively break with such practices. Nikulin’s 
(2012b) work on “indivisible lines” and Negrepontis’s work on periodic 
anthyphairesis draw this in deeper relief. What emerges here is that key 
features of periodic anthyphairesis as described by Negrepontis (2012) correlate 
strongly with the design of the Parthenon as a mathematical construction. 
This vindicates Negrepontis’s explanation—itself an echo of Knorr (1975) 
and Szabó (1978), as reconstructed by Fowler (1999)—of Aristotle’s claim 
from Topics (158b22f.) about a pre-Eudoxan approach to proportions in 
Greek mathematics through finite and infinite anthyphairesis.36 This itself 
points toward the possibility of a robust, theoretical reflection on recursive 
procedures, like those used in the construction of the Parthenon, having 
already existed by the time of the Parthenon’s design. Such a reflection 
would have addressed, for instance, the question of why some recursive 
expansions in square yield continuous proportions of whole numbers, 
while others arrive at the “infinite anthyphairesis” Plato is worried about 
in dialogues such as Theaetetus, Philebus, and Statesman. 

A synoptic rehearsal of three crucial elements of the temple’s design 
described above demonstrates this.37 First is periodicity itself. As we saw 
in comparing the dimensions of the Parthenon’s stylobate with standard 
Doric intercolumniation, a 5:1 (80:16) ratio of intercolumniation to triglyph, 
the Parthenon’s continuous proportions give a ratio of 81:16 between 
these elements. The refinements involved with fitting these two slightly 
different things together is a first instance of the problem of harmonia in 
the Parthenon. Second, the construction of the unit. As described above, 
using this particular continuous proportion, at various scales, allowed for 
the building’s overall cubic proportions, in the continuous proportion of 
81 (length) : 36 (width) : 16 (height) to have as its unit the real, visible 
triglyph module. Last, the harmony of the whole. As in the construction 
of the ancient Greek musical scale, and as Nikulin (2012b) details in his 
discussion of the divided line and its importance to Plato, so too in the 
building of the Parthenon, the consideration of a geometric object in 
arithmetical terms as a means of forging an aesthetic (and ontological) 
whole gave rise to an irreducible tension between magnitude and multitude. 
This tension is made productive in all three cases as the decisive factor 
in the thinking-through of harmonics (harmonia), that is, in the joining 
together of conflicting elements to create a unity. In Doric architecture, 
this problem emerges most fully in the need for a harmonious articulation 
of the building’s corner, an issue engaged with unique intensity in the 
Parthenon, via a unique (to our knowledge) approach to a “distribution 
of the difference” problem. 
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However much might remain undecidable in what we have presented, 
it should be clear why the interpretation of the mathematical features of 
the Parthenon opens up large questions about the development of Greek 
mathematics in the first decades of the second half of the fifth century. 
The advanced state of practical mathematics in mid-fifth-century Athens 
rekindles the old but not extinguished flame in debates concerning the sui 
generis nature of theoretical mathematics in fourth-century Greece and the 
possibility that there was real continuity between Greek mathematicians 
and their Near-Eastern predecessors. This suggests that we would do well 
to develop a deeper appreciation of the “algorithmic problem–oriented 
style” of many pre-Euclidian Greek mathematicians—at least, we would 
maintain, of those knowledge practitioners involved in the design of this 
building, and also for those (in both the western colonies and on the 
mainland) with whom they were obviously in productive contact. This 
finding seems consistent with Netz’s (2002) account of Greek “counter 
culture” as a practical affair in the “cognitive history” of the sixth and 
fifth centuries. But if there is a conscious attempt to introduce this 
mathematics into this building in a thematized and programmatic way, 
what is the intellectual background of that attempt? We attempt an answer 
by investigating the state of the art in Greek mathematics during Plato’s 
long intellectual career in part I; we then move on in part II to critically 
reconstruct the work the Parthenon was doing as a “vanishing mediator” 
between the seventh- and sixth-century Near-Eastern mathematics we 
have seen exemplified in the solar and lunar tables above and the work 
of Plato and his contemporaries in and around the early Academy.
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