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HISTORICAL PRECEDENTS

The interest in compiling a book of recent research on the
development of multiplicative concepts evolved from a variety
of efforts. Research on multiplication and division revived in
the early 1980s with the work of Fischbein, Deri, Nello, and
Marino (1985) who hypothesized that “Each fundamental op-
eration of arithmetic generally remains linked to an implicit,
unconscious, and primitive intuitive model” and argued that
these models impose constraints on students’ predictions of
the operation needed when solving multiplication and divi-
sion with different decimal numbers. They conjectured that
the primitive intuitive model for multiplication was repeated
addition and for division was based in either partitioning
(sharing) or repeated subtraction. This work built on and was
further complemented by a line of research by Bell, Swan,
and Taylor (1981) and subsequently by Bell, Fischbein, and
Greer (1984), Luke (1988), and Graeber and Tirosh (1988)—
all of whom investigated how these models would lead to the
assumption that multiplication makes bigger and division
makes smaller. Recent work has examined further the impact
of numeric form and value on students’ and teachers’ selec-
tion of operation and is reported in this book (Harel, Behr,
Post, and Lesh, Chapter 10). An issue of The Journal of Math-
ematical Behavior (vol. 7, no. 3, December 1988) with guest
editor B. Greer was devoted to the topic.

In 1983, in the Acquisition of Mathematics Concepts
and Processes (R. Lesh and M. Landau, editors), the research
activities of two groups set the stage for a second wave of
research in this arena. Vergnaud introduced to an American
audience the idea that a conceptual field is a “set of problems
and situations for the treatment of which concepts, proce-
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dures and representations of different but narrowly intercon-
nected types are necessary” (p. 127). He discussed the treat-
ment of a multiplicative conceptual field as an example and
identified the broad strands of this conceptual field to in-
clude: multiplication, division, fractions, ratio, rational num-
ber, linear and n-linear functions, dimensional analysis, and
vector spaces.

in the same volume, results from the Rational Number
Project were reported by Behr, Lesh, Post, and Silver. By re-
viewing and analyzing the seminal work of such scholars as
Dienes, Karplus, Kieran, and Hart, they offered a synthesis of
the field and identified six “subconstructs” of rational num-
ber: part to whole comparison, decimal, ratio, indicated divi-
sion (quotient), operator, and measure of continuous or dis-
crete quantities. These two papers established a common
theme. It was no longer sufficient to analyze the cognitive
development of these ideas in isolation. There was a recogni-
tion that the ideas were interwoven into a field of related
concepts, whose acquisition would not be linear or piece by
piece. As with a spider’s web, contact with one strand would
reverberate across the entire space.

In 1986, a series of conferences were held reviewing sig-
nificant bodies of research under National Science Founda-
tion's Research Agenda Project for Mathematics Education
(Sowder, 1988). One of these groups produced Number Con-
cepts and Operations in the Middle Grades (J. Hiebert and M.
Behr, editors). The majority of these papers treated topics
from the multiplicative conceptual field. This collection pro-
vided a case for rethinking the development of the number
concept through the grades. As the editors put it:

Mastery of many of the number concepts and number
relationships in the middle grades appears to require a rec-
onceptualization of number, a significant change from the
primary grades in the way number is conceived. . . . Given
the fundamental changes in the nature of number-. . . , it is
not surprising that significant cognitive reorientations are
needed to construct and comprehend such changes. This
means that it is likely that there are not smooth continuous
paths from early addition and subtraction to multiplication
and division, nor from whole numbers to rational numbers.
Multiplication is not simply repeated addition, and rational
numbers are not simply ordered pairs of whole numbers.
The new concepts are not the sums of previous ones. Com-
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petence with middle school number concepts requires a
break with simpler concepts of the past, and a reconcep-
tualization of number itself. (Hiebert and Behr, 1988, p. 8)

In addition to work by the researchers just cited, the
book included such work as that conducted by Nesher, which
introduced an instructional dimension into the discussion of
models of multiplication. Nesher made distinctions between
“mapping rule” multiplication (three books per shelf and
four shelves), multiplicative compare problems (three times
as many this as that), and Cartesian multiplication (four
shirts, three pants, how many outfits?). She connected these
distinctions to distinctions made by Schwartz (1988) be-
tween different types of quantity and multiplication of these
various types of quantity by each other: intensive by exten-
sive, scalar by extensive, and extensive by extensive. Nesher
reported that students’ success in solving multiplication
problems seemed heavily dependent on the instructional set-
ting and linguistic cues.

A follow-up conference to the Research Agenda Project
meeting was held in San Diego, and a subgroup was formed to
pursue further the ideas of the “multiplicative conceptual
field.” With support from the National Center for Research in
Mathematical Sciences Education and the National Science
Foundation, this group met four times over the period of
1989-1990, chaired by the editors of this book. The chapters
in this volume are, for the most part, a result of those meet-
ings and discussions. A few were solicited separately when
their authors were unable to attend the meetings. The editors
wish to acknowledge the contributions of Kenneth Carlstrom
to publication of this book. His careful reviews and com-
ments contributed significantly to improvement of the manu-
script. Support for these meetings and manuscript prepara-
tion came from NSF grant MDR 9053590.

SHARED COMMITMENTS

The contributors to this monograph share four basic com-
mitments:

1. The topics included under the rubric “multiplicative
conceptual field” (MCF), possess an interconnectedness and

complexity that presents a unique research challenge. This
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sense of connectedness is repeatedly expressed throughout
the volume: “[R]esearchers should study conceptual fields
and not isolated situations or isolated concepts™ (Vergnaud,
p. 46); “The domain represents a critical juncture at which
many types of mathematical knowledge are called into play,
and a point beyond which a student’s understanding in the
mathematical sciences will be greatly hampered if the con-
ceptual coordination of all the contributing domains is not
attained.” (Lamon, p. 90);

2. The ideas of the MCF develop over considerable time
periods, and new topics require the reconsideration of old
topics as one develops a mature understanding of the field.
A developmental approach makes it essential for researchers
of elementary, middle and secondary levels to discuss, debate
and share their insights. “[O]ne of the goals of current re-
search is to identify important mathematical processes,
themes, or connections by which thinking becomes pro-
gressively more sophisticated from early childhood through
early adulthood” (Lamon, p. 90). “This chapter is concerned
with the extension of meaning of multiplication and division
from their early conceptualizations” (Greer, p. 61) “Such
guidance, necessarily, would have to start from points that
are accessible to the child; and to establish these starting
points it seems indispensable to gain some insight into the
child’s conceptual structures and methods, no matter how
wayward or ineffective they might seem” (Steffe, p. 5).

3. Among the authors there is a willingness to think
deeply about and to rethink and revise the epistemological
content of the area. “We are proposing an alternative experi-
ential basis for the construction of number in a primitive
cognitive scheme we label splitting” (Confrey, p. 291). “In un-
dertaking historical analysis, we are not advocating the naive
view that individual learning should follow historical develop-
ment, but rather looking for ways in which a ‘rational recon-
struction’ . . . of the historical genesis of mathematical con-
cepts may complement our work with students, helping us
see students’ work from a different perspective” (Smith and
Confrey, p. 332) “We will now examine the several forms of
competent, but informal, reasoning that have been commonly
observed in missing-value problem situations, and then con-
trast these with the more formal equation-building approach
typically taught in schools” (Kaput and West, p. 245). “In our
recent effort to better understand the multiplicative concep-
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tual field, and in particular the transition phase from the
additive structure to the multiplicative structure, we probed
into [the question of incongruity between the meaning of]
multiplication and division in the whole number domain [and
that in] the rational number domain” (Harel, Behr, Post, and
Lesh, p. 363). “This perspective calls for deep, careful, and
detailed analysis of mathematical constructs both to exhibit
their mathematical structure and to hypothesize about the
cognitive structures necessary for understanding them. Such
analysis would lead to a theory about mathematical knowing
and learning that could guide cognitive research” (Behr, Harel,
Post, and Lesh, p. 124).

4. To learn about a multiplicative conceptual field, one
must examine its relationship to the situations in which
multiplicative reasoning occurs and not view its ideas as
isolated abstractions. “The premise behind this investiga-
tion is that when people reason mathematically about situa-
tions, they are reasoning about things and relationships.
The ‘things’ reasoned about are not objects of direct experi-
ence and they are not abstract mathematical entities. They
are objects derived from experience—objects that have been
constituted conceptually to have qualities that we call math-
ematical” (Thompson, p. 180).

THE CONTENTS

The need for a new publication on the topic was due to the
progress that has been made in this field. As one reads
through this volume, it becomes apparent that certain issues
concerning units, ratios, rates, and recursion are emerging
as fundamental ones. These are not treated uniformly in the
book, but they continually resurface as explanatory concepts
for the research reported. A second reason for the production
of a new volume is that the topics included in MCF seem
increasingly critical in school mathematics:

1. Mullis, Dossey, Owens, and Phillips (1990) report re-
sults that suggest that these topics are still poorly learned.
At grade 8 only 49 percent of the students answered the fol-
lowing question correctly: “The weight of an object on the
Moon is 1/6 the weight of that object on the Earth. An object
that weighs 30 pounds on Earth would weigh how many

ounds on the Moon? Answer 5 " (p. 476).
P Copyrighted Wateria 4
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2. These topics create the critical juncture in middle
school, separating those students who persist and those who
drop out.

3. There is evidence that these topics are poorly under-
stood by elementary teachers, and hence, effective methods
for approaching them will have an impact not only on stu-
dents but on teachers (Harel, Behr, Post, and Lesh, Chapter
10 in this volume; Simon and Blume, 1992)

4. These topics are critical in technological environ-
ments, where decimal notation typically replaces ratio and
root displays and where issues of scaling require a deep un-
derstanding of the rational numbers and operations.

5. These topics provide a rich and fertile source of prob-
lems as mathematics educators recognize the need for in-
creased use of situations, contexts, and problem solving.

Shulman (1978) argued for the importance of critical
research sites. A critical research site is one in which the
production of new insights will lead to dramatic reconcep-
tualization in both that arena and others. All too often re-
searchers choose topics whose primary criterion for selec-
tion is their amenability to available research methods, using
the field's current concepts and forms of methodology, an
approach which slows down progress in the field.

In recognizing the complexity of the topics in MCF, the
work reported in this volume represents a rather substantial
departure from traditional mathematics education research.
The research projects represent an attempt to consider seri-
ously the difficulties and challenges students and teachers
face when approaching the topics of multiplication, division,
ratio and proportion and to find new ways to think and talk
about those difficulties and challenges. In this volume, to
create some of those new descriptions, the contributors have
moved beyond the presentation of particular research results
to articulate and examine their conceptual and methodologi-
cal commitments, placing their results in a larger framework.

Part I. Theoretical Approaches

In the first part, the authors seek to establish a conceptual
paradigm for their work and provide examples of what is pro-
duced from such a paradigm. Leslie Steffe locates his work in
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radical constructivism. He contrasts Piaget's claim that the
operations of the child may not mirror adult operations in
any simple way, with “The current notion of school mathe-
matics [that] is based almost exclusively on formal mathe-
matical procedures and concepts that, of their nature, are
very remote from the conceptual world of the children who
are to learn them” (Steffe, p. 5) Steffe calls for very close
attention to be paid to the current structures of the child and
argues for the teaching experiment as the most viable way to
allow sustained interactions in which a child’s initial organi-
zations and operations can be inferred and the development
of new schemes can be observed.

In contrast, Vergnaud begins from a different starting
point. Rejecting the trends in psychology to explain all cognition
from non-discipline-based positions (information processing,
and so on) he argues for subject-matter specificity of research
on multiplication and its related concepts. In doing so, he
seeks a conceptual analysis of the domain. In this contri-
bution, Vergnaud clearly articulates what he means by the do-
main to be analyzed. He does not mean exclusively the math-
ematical concepts of “multiplication and division; linear and
bilinear (and n-linear) functions; ratio, rate, fraction, and ra-
tional numbers; dimensional analysis; and linear mapping and
linear combinations of magnitudes” (Vergnaud, p. 46), which
he identifies as the mathematical bundle of topics included in
MCF. He proposes to investigate these related ideas of mathe-
matics in such a way as to include the “conceptual operations
needed to progressively master this field"” (p. 42), “the situa-
tions and problems that offer a sound experiential reference”
(buying and sharing sweets, speed, concentration, density,
similarity, probability), a “bulk” (he uses this in preference to
set, which connotes too strongly well-defined borders) of con-
cepts for analysis, and language and symbols for communicat-
ing and thinking. Vergnaud, like Steffe, locates his work in
Piagetian and Vygotskian traditions and emphasizes the devel-
opmental, nonlinear acquisition of these ideas. He is explicit
in his educational intentions: prediction of comparative diffi-
culty of problems and the design of instructional situations.

Interestingly enough, both researchers end by identify-
ing a scheme as a primary explanatory constructin their work.
For Vergnaud, “Schemes are the most essential part ofa theo-
ry of conceptual fields, as they generate actions” (p. 55). He
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defines the role of a scheme as “the invariant organization of
action for a certain class of situations” (p. 53) Schemes
require “concepts in action” to provide the categories for ob-
taining information and “theorems in action” to allow one to
derive rules and expectations.

Steffe defines a scheme, in accordance with von Glasers-
feld’s definition, as having three parts: “First, there is an ex-
periential situation (i.e., a “trigger” situation, as perceived by
the child, with which an activity and its result have been
associated); second, there is the child’s specific activity or
procedure; and third, there is a result (again, as perceived or
conceived by the child)” (p. 7). Steffe quotes Piaget, who
wrote, “All action that is repeatable or generalized through
application to new objects engenders . . . a‘scheme’” (quoted
on p. 6) Steffe’s goal is to “seek to learn the child’s schemes
and how the child might modify those schemes in the context
of solving my situations” (p. 7).

Given that both researchers end up emphasizing the im-
portance of “schemes”, one might expect a measure of con-
vergence in their claims about multiplication, division, and
related concepts. However, differences are striking, perhaps a
matter of degree and emphasis, but nonetheless clearly evi-
dent in the two chapters. In the Steffe work, the child is ever
present. His definition of scheme emphasizes the child’s per-
spective, and he devotes considerable attention to articulat-
ing how a child might be viewing a task as a continuation of
earlier actions. Grounded on his seminal work on counting
(Steffe, von Glasersfeld, Richards, Cobb, 1983), his approach
starts from counting and number sequences, from which he
articulates a theory of unit types to explain how a child
comes to understand multiplication. Multiplication requires
the coordination of two counts along with the construction
of a set of objects as a unit. In the end of the chapter, he
addresses the formal mathematical properties of commu-
tativity and Krutetskii's notion of “curtailment”, but he uses
children’s schemes to explain the properties, not the reverse.

Vergnaud’s analyses are more immediately informed
by the formal mathematical principles that he sees as ap-
plying across problems and representational forms as hid-
den mathematical structure, at different levels of abstraction.
He states that the goal of teaching is to assist students
in seeking and utilizing the “invariance across situa-
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tions” thus promoting generalization and transfer. He ex-
plicitly rejects the idea that conceptual analysis can be
conducted a priori and offers a broad outline of a develop-
mental path through MCF. His descriptions of effective ap-
proaches come from such conceptual analysis, informed by
student work and teaching situations. Vergnaud's analysis
has led researchers to articulate even more differentiated
maps of the field. In contrast to Steffe, however, Vergnaud
does not discuss explicitly the child’s voice and ways of talk-
ing. The children’s methods are cast into the more formal
presentation of “theorems in action” of the child.

Greer, in “Extending the Meaning of Multiplication and
Division,” takes the position that mathematical ideas have
their birth in limited frameworks, such as the integers, and
their meaning is gradually extended to allow for the inclusion
of the real numbers. This claim allows him to make a funda-
mental epistemological claim, “that epistemological and psy-
chological questions of comparable interest and importance
are raised at every stage of reconceptualization through the
long development of the conceptual field,” (p. 73) and “the
extension of concepts, relations, functions, and so forth from
one domain to a more general domain is a characteristic
mode of development within mathematics and an appropriate
subject for study” (p. 74). He takes the position that cate-
gories of word problems, such as rate, multiplicative compar-
ison, rectangular array, and product of measures, should be
orthogonally considered in relation to the types of numbers
used in them. Three categories are proposed: counted inte-
gers, integers or fractions derived from division, and deci-
mals as measures of quantities.

He reviews the literature on the misconception “multipli-
cation makes bigger and division makes smaller” (MMBDMS).
Logically, he argues, the numbers in a problem that can be
modeled by a single operation carry no information as to the
appropriate operation. Nevertheless, they drastically influ-
ence the difficulty of the choice-of-operations task. When the
multiplier is nonintegral, the problem increases in difficulty.
In division, factors other than numeric values are cited as
playing significant roles. Greer describes the tendency of stu-
dents to alter their predictions as “nonconservation of opera-
tions" (Greer, 1987).

Again we witness a clear commitment to the situation:
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“understanding of the application of the operations in model-
ing situations is weak” (p. 69). Greer uses the term schema
to describe that which can be developed robustly when the
student exhibits an “appreciation of the invariance of the
operation over the numbers involved, which is the keystone
of extension of meaning for multiplication and division”
(p- 70). Citing the importance of historical or ontogenic terms,
Greer takes the position that such extensions take time. He
sees fractions, in particular the unit fraction, as providing the
linking role, both as a divider and as a multiplier (as do
Vergnaud (this volume), and Confrey (this volume) in her dis-
cussion of earlier work by Greer).

While Greer's chapter can be viewed as an elegant en-
capsulation of a line of studies to which he was a major con-
tributor, in it he also leaves the reader with a set of provoca-
tive new issues to consider: (1) fractions may be useful to
form a bridge to decimal multiplication and division, partic-
ularly the unit fraction, and (2) situational problems can be
presented in configurations that progressively raise certain
challenges to allow students to gradually overcome obsta-
cles.

Taken together, the first three chapters of the book give
the reader a variety of choices about how to conduct research
in the multiplicative conceptual field. Each builds from a Pi-
agetian framework, two using most explicitly the idea of
schemes (Vergnaud, Steffe) and the third working with a con-
servation argument. In Steffe, the examination is built from
the ground up, starting from the actions of the child and
building a descriptive model informed by the discipline of
mathematics, but concerned primarily with adequate expla-
nation of the child's view of a task and methods of proceed-
ing. In Vergnaud, an analysis of the conceptual field seeks to
weave together mathematical explanation with educational
purpose using the logical apparatus of “theorems in action”
as the guiding construct. And Greer seeks an explanatory
construct for the puzzling and robust tendency of students
to alter their prediction of operation in light of the type of
decimal presented. He offers “nonconservation of operation”
as a psychological construct to be used in evaluating the
maturity of a mathematical mind in terms of one’s successful
extension of understanding from the limited but intuitive
class of natural numbers.
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Part II. The Role of the Unit

In the second part of the book, the contributors continue a
theme present in the introductory theoretical part concern-
ing the role of the unit. The concept of a unit, an entity that is
treated as a whole, is key throughout the book. Why does this
particular construct become so essential in the multiplica-
tive literature, when its importance in the addition and sub-
traction literature is limited? Dienes and Golding (1966),
writing about “sets of sets” anticipate the need for a distinc-
tion between the entities operated on in addition and those
in multiplication:

It is important to realize that in this operation we have
gone beyond the idea of addition. It is true that the same
answer can be obtained to the problem by an addition of the
three terms as by multiplication by three. Just because the
answer is the same does not mean that the operation is
the same. Multiplication involves a new kind of variable,
namely the multiplier, which counts sets. The multiplier is
a property of sets of sets. The multiplicand is a property
of sets. So the two factors do not refer to the same uni-
verse. . . . Every number refers to sets in addition, whereas
in multiplication some refer to sets of sets and others refer
to sets. This is a very great difference and the exercise chil-
dren will have had in dealing with sets and in dealing with
sets of sets and even with sets of sets of sets, will serve
them in good stead in coming to grips with the problems of
multiplication at this stage. (p. 34)

In this volume, that distinction is strengthened through
widespread discussions of the role of the unit. To create an
understanding of a set of sets, one must first be able to treat
a set, a collection, as a unit. This fundamental process of
treating a collection as a whole is named by a variety of the
authors in the volume and elsewhere as constructing a com-
posite unit (Steffe, this volume), unitizing (Lamon, this vol-
ume), and in the context of repeated multiplication as re-
unitizing (Confrey, 1988), and reinitializing (Confrey, this
volume). Behr, Harel, Post, and Lesh (this volume) create a
way of symbolizing this action through the use of parenthe-
ses. Kaput and West (this volume) use rectangular cells in
their software to represent this same action.

The emphasis in the book is that a new type of unit is
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constructed in multiplication and division. If one returns to
the original development of a unit in the act of a counting, a
basic difference in the addition and multiplication literature
is apparent. As one counts, the unit is made, and simul-
taneously, the unit makes counting possible. That is, the cre-
ation of number sequences is achieved by a repeated action,
and from this action one creates both the numbers, 1, 2, 3, 4,
5 and the operation, a count. This interrelationship between
an operation and the construction of number is an important
insight expressed in a number of the chapters in the book
(Steffe, Lamon, Behr et al., Kaput and West, Confrey, Smith
and Confrey). In repeated multiplication, one sees a change,
however. There is a repeat action, what Confrey calls split-
ting, but the initial whole is continuously revised into a new
whole. In an earlier paper (Confrey, 1988), Confrey labels this
reunitizing but later renames it reinitializing so as not to
confuse it with the role of the multiplicative unit. This cre-
ates a recursive view of the multiplicative process in which
the action of multiplication itself (with a primitive in split-
ting) is taken as a unit.

In the first chapter of this part, “Ratio and Proportion:
Cognitive Foundations in Unitizing and Norming,” Lamon
recognizes the complexity of the domain of ratio and propor-
tion and proceeds to offer two elegant constructs for organiz-
ing it. Unitizing is “the ability to construct a reference unit or
a unit whole” (p. 92), and norming is “to reinterpret a situa-
tion in terms of that unit.” She reports on the variety of strat-
egies students used in solving four problems on ratio and
proportion. In each case, she provides careful description
of how the students approached the problems and reasoned
out their answers. In her analysis and discussion, she ar-
gues that the students used a building up strategy to solve
“missing value” problems, and in doing so, she suggests that
they were treating the ratio itself as a unit by which they
reconceptualized the problem. In her problems, in which the
students are asked to compare the amounts of food distrib-
uted over a set of children and subsequently “aliens,” she
describes how the students used a rate (so many x per so
many y) to create and build up comparisons. Her presenta-
tion of student methods demonstrates a number of her dis-
tinctions.

In the second chapter of this section, Behr et al. create
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notational languages to represent the mathematics that is or
might be used by children, and they demonstrate the appli-
cability of these languages in additive and multiplicative con-
ceptual fields. By analyzing these fields from the perspective
of the unit, they point to some of their common structures.
Based on this commonality they argue that using a units
approach to elementary multiplicative and divisional rela-
tions (which allows for nonunitary units, i.e., composite
units) would greatly enhance students’ entry and successful
acquisition of rational number proficiency.

They see a need for this notational language because
they have found standard mathematical symbolism inade-
quate to represent children’'s mathematics in terms of the
various unit types, such as those demonstrated by Lamon.
Their notational language consists of two systems. The first
is iconic and the second is linguistic, with the word unit as
the basic element, from which units of units can be formed.
Their use of two systems provides a stable interpretative
structure and assists one in viewing the world from a “units
of quantity” perspective. These systems, they emphasize, are
not designed for use with children in instructional activities.
They aid researchers to communicate about children’s con-
ceptions of specific additive and multiplicative situations, to
hypothesize the cognitive structures that develop, or need to
be developed, in acquiring an understanding of the concepts
discussed, and to suggest kinds of learning events that chil-
dren ought to experience so that they have an opportunity to
develop these structures.

Part III. Ratio and Rate

The third part of the book concerns the topics of ratio and
rate. In this part, the authors, Thompson and Kaput and
West, seek to create a bridge between the role in multiplica-
tive structures of rate, as a description across a set of partic-
ular instances, and ratio, as a multiplicative relation between
two specific quantities.

Thompson's chapter on children’s concepts of rate
and ratio must be understood in the context of his theo-
retical perspective on quantitative reasoning, a perspective
that brings forth the mathematics of rate, but that does not
apply the ideas learned in abstract and largely symbolic
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forms. In his framework, consistent with that of Steffe, Con-
frey, Smith and Confrey, and Kaput and West, actions are in-
ternalized into mental images of situations. The automaticity
and freedom inherent in these images varies, and at the most
sophisticated level, the transformation of the objects are car-
ried out at an operational level. This progression from action
to operational transformation is a key activity in Thompson’s
argument about the construction of quantities, which, for
him, are “schematic;"” that is, “a quantity . . . is composed of
an object, a quality of the object, an appropriate unit or di-
mension, and a process by which to assign a numerical value
to the quality” (p. 184). Quantification is the act of assigning a
numeric value to the quality. In contrast, a quantitative oper-
ation is different from numerical operation; “it has to do with
the comprehension of the situation” (p. 187) The compre-
hension of quantitative situations gives rise to the construc-
tion of quantitative operations and relationships. In the con-
text of this theoretical framework, he deals with the question
of how can one “orient a student so that she would construct
a scheme for speed that would be powerful enough that she
would recognize (what we take as) more general rate situa-
tions as being largely the same as situations involving speed”
(p. 183).

In Thompson's report of a teaching experiment with a
fifth grade girl using a computer microworld of a rabbit and a
turtle, an evolution of a quantitative concept of speed is pre-
sented. Two features stand out. First, the student works to-
ward a scheme that seems to be composed of covarying accu-
mulations of two segmented quantities, distance and time,
and no quantity acts as the primitive, or the extensive quan-
tity in Schwartz's terminology (1988), in that, as this student
built her understanding, she actually viewed time as a speed
per unit distance. “[H]er initial conception of speed was that
it was a distance, and her initial conception of time was that
it was a ratio” (p. 224). Second, Thompson points out sev-
eral important issues emerging from this teaching experi-
ment, two of which are (1) “the standard method for introduc-
ing speed in schools as ‘distance divided by time'" before
students have acquired a “mature conception of speed as
quantified motion,” would have little, if any, relevance to their
initial understanding of speed. As a result, students would
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not be able to make a progress in their conception of speed
as the student in his experiment did; (2) “what is called di-
mensional analysis, or the arithmetic of units (e.g., miles +
miles/hour = hour)” should be condemned, “at least when [it
is] proposed as ‘arithmetic of units,’ and [we should] hope
that it is banned from mathematics education” (p. 226).

In the second chapter in this part, Kaput and West re-
port on their work with sixth grade students on missing-
value proportional reasoning problems. They make a distinc-
tion similar to that made by Thompson between rate and
ratio, which they term rate-ratio and particular ratio, respec-
tively. Making this distinction allows them to describe what
an understanding of rate must entail, including numerical
and semantic equivalence and homogeneity of relation with-
in the quantities being sampled.

The authors then propose a model of the development of
a fuller or more mature understanding of proportional rea-
soning that goes from understanding particular ratios to
rate-ratios through build-up strategies, abbreviated strate-
gies, and finally the development of unit factor approaches.
Going through a set of four problems, the authors articulate
how a student must first identify the variables (the quantities
that vary) and “The solver must then be able to form groups
or segments that are the referents for the incrementing quan-
tity steps and finally must be able to coordinate the two types
of groups or segments to coordinate the dual incrementing
acts” (p. 246-247).

In the two chapters, one sees similar approaches to
quantity and computation, where the activity of concep-
tualizing the problem quantitatively precedes the computa-
tions. A second similar aspect of the two chapters is that in
both approaches, one sees the beginnings of a function con-
cept. The connections between early development of the
function concept and proportional reasoning have also been
articulated by Rizzuti (1991), who argued similarly to these
authors, that covariation is a powerful way for students to
approach contextual problems and organize a scheme to un-
derstand how quantities vary in relation to each other. This
covariation approach to function resurfaces in the next chap-
ters as the authors (Confrey and Smith) tackle the develop-
ment of an understanding of exponential functions.
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Part IV. Multiplicative Worlds

Confrey’s chapter, “Splitting, Similarity, and Rate of Change:
A New Approach to Multiplication and Exponential Func-
tions,” offers a new primitive on which the concepts of both
division and multiplication can be based. Based in actions
such as sharing, folding, dividing symmetrically, growing,
and magnifying, the splitting construct is contrasted to
counting actions, which create addition (affixing, joining, an-
nexing, removing). Confrey postulates that it has a comple-
mentary but equally significant role in the elementary curric-
ulum, one neglected under current treatment.

Her approach to multiplication shares features with oth-
ers. Schemes are important as in Steffe, Vergnaud, and
Thompson, but the work reported on for the early grades is
largely anecdotal. She offers a cycle of conceptual construc-
tion moving from “problematic to action to reflection” de-
scribing a scheme as a ‘“cognitive habit of action,” thus
stressing the repetitious quality of schemes. Explicitly, she
argues for attention to operations as evolving from actions
and to numbers as evolving from operations. Therefore, she
sees significant interactions between situational charac-
teristics, the actions performed by students and their pur-
poses and goals, the development of mental operations, and
subsequently the construction of numbers.

In her argument for the recognition of splitting and
counting as independent cognitive structures, she notes first
that in counting the origin is zero, the successor action is
adding one, the unit (as the invariance between predecessor
and successor) is one, addition and subtraction are basic
operations, intervals are made from differences via subtrac-
tion, and rate is difference per unit time. In splitting, she
suggests, the origin is one, the successor action is splitting
by n, multiplication and division are basic operations, ratio is
used to describe the interval between two numbers (percent-
ages, for example), and rate is the ratio per unit time.

Like the arguments in Greer, she offers an argument
that the inclusion of additional representational forms is
necessary to improve students’ understanding. She includes
among these the tree diagram, embedded similar figures, and
a new similarity based plane. She shows how her analysis
can lead to a more secure foundation for the development of
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the exponential function as its roots lie in repeated multi-
plication.

The splitting conjecture is followed by the chapter by
Smith and Confrey on “Multiplicative Structures and the De-
velopment of Logarithms: What Was Lost by the Invention of
Function?” Modern notation and approaches can often act as
lenses that limit as well as guide our observations and inves-
tigations. In an effort to discover other approaches to multi-
plication, the authors examined the history of logarithms. In
doing so, they discovered that the assumptions about what
would be the most primitive type of comparison between two
quantities or magnitudes could vary depending on the ob-
server and the task. A simple example of this is in asking
someone to compare two distances, one of which is 10 feet
and the otheris 13 feet. One will most frequently describe the
difference additively as 3 feet more. If asked to compare
the distance to the moon (238,000 miles) to the distance to
the sun (93 million miles), a multiplicative comparison will
typically make more sense. (The sun is nearly 400 times as
far away as the moon.)

In this chapter, the authors report on *“the work of
Thomas of Bradwardine and Nicole Oresme, who claim that,
whereas the primitive action taken on magnitudes is addi-
tion, the primitive action taken on ratios is multiplication”
(p- 334). They describe a world created by Oresme where the
elements are ratios and the successor action is multiplica-
tion. In doing so, they recall an earlier theme, that of func-
tions as covariations. By juxtaposing geometric and arithme-
tic sequences, a logarithmic-exponential function is created.
The authors point out that this is a covariation approach to
function, where the functional relation is not given as input-
rule-output, but as a pair located in two covarying sequences,
one varying additively and one varying multiplicatively. As in
the Kaput and Thompson discussions of ratios and rates,
one sees how tabular approaches can support a build-up,
covarying rate of change approach to functions.

Going beyond the basic placement of these two se-
quences opposite each other, the authors argue how density
in them is created through the insertion of additive and geo-
metric means and how Napier eventually solved the problem
of allowing spacing of the geometric sequence to be of any
desired interval size. The chapter is an interesting addition
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to the volume for it locates the efforts of the authors in this
book in a historical context.

Part V. Intuitive Models

As has been indicated in the opening of this Introduction,
research on the concepts of multiplication and division re-
vived in the early 1980s with the work of Fischbein, Deri,
Nello, and Marino (1985) on the constraints that primitive
intuitive model impose on students' choice of the operation
to solve multiplication and division word problems. With
these models, multiplication and division have very re-
stricted meanings; for example, multiplication is conceived
as merely repeated addition. Greer devotes his chapter to
extensions of these meanings of multiplication and division
from their early conceptualization and the difficulties chil-
dren have in making these extensions. Harel, Behr, Post, and
Lesh’s chapter in this section report on a study of teachers’
limited conception of multiplication and division. More spe-
cifically, they address the impact of the number type on the
solution of multiplicative problems by preservice and inser-
vice teachers and reexamine the findings from other studies
concerning this impact, with an instrument that controls for
a wide range of confounding variables. They show that teach-
ers’ solutions of multiplicative problems strongly correlate
with the intuitive rules derived from the models proposed by
Fischbein et al. (1985) to explain children's solutions.

Harel et al. add several points to what is known in this
domain. First they looked at the explanation suggested by
Fischbein et al. (1985) and others to account for differences
in subjects’ performance on multiplicative problems with dif-
ferent non-whole-number operators, and show findings that
are not consistent with this explanation. They theorize an
alternative conceptual basis for these differences. Second,
they suggest levels of robustness of the intuitive rules de-
rived from Fischbein et al.'s models. Finally, they raise sev-
eral open research questions with regard to the impact of the
number type. For example, they point out that fractions and
decimals may not have the same effect on the solution of
multiplication and division problems, because the naming
rule of fractions is different from the naming rule of deci-
mals: "Under these naming rules, it is easier to identify the
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role of a problem quantity as an operator or operand if the
quantity is a fraction than if it is a decimal; therefore it is easier
to recognize its relation to other problem quantities.” (p. 381)

Summary

In a final discussion chapter, Kieran articulates ways to view
the overriding ideas and issues in the volume. Drawing on an
exhortation from Bereiter for larger objects of conceptual
analysis, Kieran writes, “The growth of multiplicative struc-
tures . . . is critical for a person’s conceptualizing or bring-
ing forth the world in which he or she lives” (p. 387). His
discussion highlights the distinctions in the book between
the primitives of counting and splitting and elaborates on the
strengths and assumptions of each. He identifies the new
emphasis in the volume on units, iteration, building-up, dis-
tributing and norming, and he suggests that the development
of these new ideas might help to alleviate the difficulties
identified in the research in the volume on teachers’ under-
standing of rational numbers.

In this book, we see another step in the community's
understanding of the concepts of the multiplicative concep-
tual field. The authors unite in their attempts to create lan-
guage that will allow them to describe what children and
young adults do as they encounter problems from this do-
main. What we see is the emergence of a significantly new
language that includes such terms as schemes, units, norm-
ing, covariation, iteration, recursion, ratio, repeated splits,
similarity, sequences, operations, and dimensions. These
words are not commonly used in the teaching of multiplica-
tion and division, and they promise to transform such in-
struction in rather significant ways.

The implications go beyond the field of multiplicative
relations in that an agenda is set with quantity and scheme at
the forefront. Using these terms, the authors seek to assist
the student in “bringing forth the world in which he or she
lives” in the words of Kieran. The book suggests that close
attention must be paid to how students see the tasks, not
only in individual teaching experiments, but in the rich, com-
plicated, and noisy world of classroom instruction. The
classroom work reported is limited, as would be expected at
the start of any reconceptualization of the territory; but the
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work reported on teachers' weak understanding suggests
that the need to apply this work to the classroom setting is
pressing, for staff as well as students.

However, it should not be implied that the authors speak
with a uniform voice. Those important differences that lead
to further debate, articulation of views, and forms of evidence
still are apparent in the texts. For instance, there are a variety
of opinions on the relationships between quantity, opera-
tions, and numbers. At one end of the spectrum, Greer offers
a description of “conservation of operation” and argues
that a mathematically mature person will conserve the opera-
tion in relation to the quantities given across any number
types. He suggests that this maturity is reached by over-
coming the misconception that multiplication makes bigger
and division makes smaller and might be facilitated by repre-
sentations portraying smooth and continuous change in the
magnitude of the numbers. Kaput and Thompson, in arguing
for a separation of quantitative reasoning and numerical rea-
soning, seem to locate themselves implicitly toward the same
end of the continuum, although in their empirical reports
they give careful attention to cognitive jolts that occur when
the segmentation of continuous quantity does not produce
easy integral outcomes. These jolts, however, seem to be
seen as computational disturbances and not as key in the
development of the reasoning and relationships. Lamon, and
Behr et al., in struggling to produce notation that can express
the emergence of unit concepts, seem to be more interaction-
al in their view of the matter. Lamon introduces new notation
to help the reader avoid assuming the meaning of the division
of quantity, and Behr et al. provide ample evidence of the
multiple interpretations for any expression, such as 3/4.
Steffe and Smith and Confrey are frankly explicit in their
argument that numbers are constructed from actions and
that therefore there is a necessary circularity in the number-
operation relationship. The key seems to lie in one's approach
to the unit. At the same time, quantities are segmented to
produce units of quantity (Kaput) and units are descriptions
of the invariance between a successor and a predecessor
(Confrey), and both views of units are essential to the devel-
opment of an understanding of multiplication and division.

The book is rich in ideas. Its implications for classroom
practices are less clear. However, as a theoretical text with
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careful empirical support, mostly but not completely data of
the interview-based or extended teaching experiment type,
the book contributes to the ongoing dialogue about how to
teach these most important topics.
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